编译环境
文章平均质量分 82
TomHeaven
选择了另一条路,就要承受你预见到的和没有预见的得失。
展开
-
使用CMake编译基于OpenCV开发的程序的方法
使用CMake编译OpenCV开发的程序分为以下几个步骤:1. 安装编译器和代码编辑器。2. 安装CMake。3. 安装OpenCV...原创 2022-12-22 17:59:26 · 1482 阅读 · 2 评论 -
Windows下Pycharm使用Tensorflow、Theano和Keras的方法
首先安装Anaconda x64版本(x86版本无法使用Tensorflow)。用Anaconda安装Tensorflow(CPU版)用Anaconda创建虚拟环境“tensorflow”,并安装python 3.5和tensorflow包。命令行执行conda create -n tensorflow python=3.5activate tensorflowpip install ten原创 2017-04-19 22:46:06 · 19067 阅读 · 1 评论 -
Matlab通过mex调用CUDA的方法
最近有使用Matlab通过mex调用CUDA加速视频处理的需求,于是折腾了一下,网上的说法可谓千奇百怪众说纷纭,却没有能用的。经过六个多小时的反复搜索和尝试,本人终于成功编译运动了了matlab的mexCUDA例程:mexGPUExample.cu。1.软件环境这个过程涉及三个环境:Visual Studio、Cuda Toolkit和Matlab。其中Cuda依赖Visual Studio、Mat原创 2015-09-28 21:02:47 · 20008 阅读 · 41 评论 -
Tensorflow和Pytorch Mac版(支持CUDA,Py27、Py36)
项目地址(Github)https://github.com/TomHeaven/tensorflow-osx-buildhttps://github.com/TomHeaven/pytorch-osx-build更新2018-03-27增加了对Python 3.6的支持。此博文将不再更新,请关注项目获取更新信息。Tensorflow OSX Build很不幸,...原创 2017-10-25 19:14:36 · 4165 阅读 · 5 评论 -
Ubuntu16.04深度学习一键安装脚本(支持pytorch、tensorflow、keras、caffe)
引言深度学习大热,因此很多同学有装机需求。本人在安装了许多台机器后,逐渐总结形成了一个“深度学习一键安装脚本”,可以在新装Ubuntu 16.04上一键安装 CUDA、cudnn、opencv、jupyter、深度学习库pytorch、tensorflow、keras、caffe和Python编辑器 Pycharm。脚本内容如下:echo "One script installat...原创 2017-08-24 19:24:14 · 5588 阅读 · 5 评论 -
Mac10.12+XCode编译caffe(含GPU加速)
在osx上编译,首先需要了解一些常识和掌握一些基本技能。 + 基本编译工具是xcode自带的clang。默认没有gcc。 + xcode 7 对应MacOSX10.11.sdk,xcode 8 对应MacOSX10.12.sdk。当本文后面需要设置sdk路径的时候,确保版本正确(后面的路径默认用的是10.11)。 + 会使用homebrew安装软件包。 + 会使用cmake和make编译软件原创 2016-11-27 17:11:33 · 6714 阅读 · 5 评论 -
Ubuntu14.04下安装Python2.7+Theano0.7+CUDA7.5
为了感受深度学习算法,从deeplearning.org上接触到了Python的Theano库,这是一个有透明GPU加速的算法库。最开始想在Windows上装的,但是折腾了一天没搞成,转而到Linux上先搞成了。1.需要的环境和软件首先确保在Linux上CUDA可用(否则是用不了GPU加速的),我已经在Ubuntu14.04x64上安装好了CUDA7.5(Nivida官网有deb安装包)。其次点击此原创 2015-11-12 23:29:51 · 2615 阅读 · 0 评论 -
Mac10.11安装Python2.7+Theano0.8+CUDA7.5
前面已经介绍过Win10和Ubuntu14.04安装Python2.7+Theano0.7+Cuda7.5的方法。本文把最后的Mac系统也搞定了。总体过程比较顺利,中间有些小Trick,都一一解决了。1. 下载安装pip-8.1.2.tar.gzsudo chmod a+x setup.pysudo ./setup.py install2. 安装常用库的最新版本sudo pip install n原创 2016-09-11 15:25:38 · 4375 阅读 · 1 评论 -
Win10下安装Python2.7+Theano0.7+CUDA7.5
前面写过《 Ubuntu14.04下安装Python2.7+Theano0.7+CUDA7.5》,那时Windows下用theano的GPU加速一直失败,今天终于找到了原因,是一个小trick。1. 环境在Windows上安装好Visual Studio 2013,CUDA 7.5和python2.7。确保它们都能正常工作。2. 安装步骤安装只有一步,安装theano和pycuda包。在命令行中执行原创 2016-06-16 17:30:06 · 4023 阅读 · 0 评论 -
Ubuntu14.04+Cuda7.5驱动BUG的解决方案
前面写过一篇修复Ubuntu14.04启动时黑屏卡死的文章。现在遇到了前面的方法无法解决的问题。经过7个小时的探索,有了暂时解决方案,记录如下。 (注意:本方法仅适用于双显卡笔记本。)1. 软件版本我使用的软件版本如下: 系统 内核版本 Nvidia 驱动版本 CUDA版本 Ubuntu 14.04 3.13.0-61 352.63 7.52. 故障现象及原因故障现原创 2016-04-24 19:31:09 · 2864 阅读 · 0 评论 -
安装cvxpy时解决ImportError: No module named multiprocessing
参加ICASSP2016时了解到Python下有一个优化工具包cvxpy,代码形式非常简洁,于是想尝试一下。1.环境本机环境windows 10 x64 + python2.7。2.安装方法运行如下命令:pip install cvxpy执行样例代码from cvxpy import *import numpy# Problem data.m = 30n = 20numpy.random.se原创 2016-03-24 23:00:18 · 11933 阅读 · 0 评论