优化理论
文章平均质量分 92
TomHeaven
选择了另一条路,就要承受你预见到的和没有预见的得失。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
旅行商问题与蚁群算法
旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题:说有一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。请问他应如何选择行进路线,以使总的行程最短?原创 2022-10-17 19:14:31 · 3351 阅读 · 2 评论 -
线性回归与贝叶斯推理——漫谈机器学习
1. 从观察出发——回归问题在统计学中,我们认为一个变量是服从某种理想分布的,称为理想变量。而为了获得理想变量的值,我们需要去观察这个世界,并得到观察数据,称为观察变量。观察变量与理想变量之间的函数关系被称为观察模型。设观察数据为xi∈Rpx_i \in R^p,理想数据为yi∈Ry_i \in R,观察模型为线性模型 yi=xTiβ+ηi(1)\begin{equation}y_i = x_i原创 2016-12-02 19:13:40 · 5135 阅读 · 0 评论 -
Matlab实现FR共轭梯度法
前一段时间学习了无约束最优化方法,今天用Matlab实现了求解无约束最优化问题的FR共轭梯度法。关于共轭梯度法的理论介绍,请参考我的另一篇文章 无约束最优化方法学习笔记。文件testConjungateGradient.m用于测试共轭梯度法函数。测试文件需要定义函数ff和自变量xx,给定迭代初值x0x_0和允许误差ϵ\epsilon。函数设置了show_detail变量用于控制是否显示每一步的迭代信原创 2015-08-26 00:24:00 · 35640 阅读 · 16 评论 -
线性约束最优化问题的Frank-Wolfe方法
在无约束最优化问题的基础上,我们可以进一步来求解约束最优化问题。约束最优化问题的一般形式为: minf(x)s.t.gi(x)≥0,i=1,...,m\begin{aligned}&\min f(x) \\ &s.t. \quad g_i(x)\ge0, i=1,...,m \end{aligned}先考虑gi(x)g_i(x)均为线性函数的情况,此时问题与线性规划的约束条件相同,仅仅原创 2015-08-30 19:43:54 · 14461 阅读 · 0 评论 -
无约束最优化方法学习笔记
这一段时间学习优化理论中的一些经典方法,写下一些要点和体会,帮助自己和有需要的人理解最优化方法。1.基础知识首先来看无约束最优化问题: minf(x)\begin{equation} \min f(x) \end{equation} 其中函数 f:Rn→Rf:R^n\rightarrow R.求解此问题的方法方法分为两大类:最优条件法和迭代法。所谓的最优条件法,是指当函数存在解析形式,能够通原创 2015-08-11 23:12:24 · 18946 阅读 · 3 评论
分享