【模拟面试】#9 实现 Trie (前缀树) 摘樱桃 最大二叉树 II

题目1

实现一个 Trie (前缀树),包含 insertsearch, 和 startsWith 这三个操作。

示例:

Trie trie = new Trie();

trie.insert("apple");
trie.search("apple");   // 返回 true
trie.search("app");     // 返回 false
trie.startsWith("app"); // 返回 true
trie.insert("app");   
trie.search("app");     // 返回 true

说明:

  • 你可以假设所有的输入都是由小写字母 a-z 构成的。
  • 保证所有输入均为非空字符串。

思路及代码

建树的过程,只不过这里一个节点可以有26个孩子,因为英文26个字母。然后叶子节点存一下string,来证明有这个值。

前缀的话只要搜索树,节点存在即可。

class Trie {
public:

    struct TrieNode{
        //孩子节点,分别记录26个字母
        struct TrieNode* children[26];
        //当前的节点(叶子节点)对应的单词
        string item;
    };

    TrieNode* root;


    /** Initialize your data structure here. */
    Trie() {
        root = new TrieNode(); 
    }
    
    /** Inserts a word into the trie. */
    void insert(string word) {
        TrieNode* p = root;
        int len = word.size();
        for(int i = 0;i < len;i++){
            if(p->children[word[i] - 'a'] == NULL){
                p->children[word[i] - 'a'] = new TrieNode();
            }
            p =  p->children[word[i] - 'a'];
        }
        p->item = word;
    }
    
    /** Returns if the word is in the trie. */
    bool search(string word) {
        TrieNode* p = root;
        int len = word.size();
        for(int i = 0;i < len;i++){
            if(p->children[word[i] - 'a'] == NULL){
                return false;
            }
            p =  p->children[word[i] - 'a'];
        }
        return p->item == word;
    }
    
    /** Returns if there is any word in the trie that starts with the given prefix. */
    bool startsWith(string prefix) {
        TrieNode* p = root;
        int len = prefix.size();
        for(int i = 0;i < len;i++){
            if(p->children[prefix[i] - 'a'] == NULL){
                return false;
            }
            p =  p->children[prefix[i] - 'a'];
        }
        return true;
    }
};

/**
 * Your Trie object will be instantiated and called as such:
 * Trie* obj = new Trie();
 * obj->insert(word);
 * bool param_2 = obj->search(word);
 * bool param_3 = obj->startsWith(prefix);
 */

题目2

一个N x N的网格(grid) 代表了一块樱桃地,每个格子由以下三种数字的一种来表示:

  • 0 表示这个格子是空的,所以你可以穿过它。
  • 1 表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。
  • -1 表示这个格子里有荆棘,挡着你的路。

你的任务是在遵守下列规则的情况下,尽可能的摘到最多樱桃:

  • 从位置 (0, 0) 出发,最后到达 (N-1, N-1) ,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为0或者1的格子);
  • 当到达 (N-1, N-1) 后,你要继续走,直到返回到 (0, 0) ,只能向上或向左走,并且只能穿越有效的格子;
  • 当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为0);
  • 如果在 (0, 0) 和 (N-1, N-1) 之间不存在一条可经过的路径,则没有任何一个樱桃能被摘到。

示例 1:

输入: grid =
[[0, 1, -1],
 [1, 0, -1],
 [1, 1,  1]]
输出: 5
解释: 
玩家从(0,0)点出发,经过了向下走,向下走,向右走,向右走,到达了点(2, 2)。
在这趟单程中,总共摘到了4颗樱桃,矩阵变成了[[0,1,-1],[0,0,-1],[0,0,0]]。
接着,这名玩家向左走,向上走,向上走,向左走,返回了起始点,又摘到了1颗樱桃。
在旅程中,总共摘到了5颗樱桃,这是可以摘到的最大值了。

说明:

  • grid 是一个 N * N 的二维数组,N的取值范围是1 <= N <= 50
  • 每一个 grid[i][j] 都是集合 {-1, 0, 1}其中的一个数。
  • 可以保证起点 grid[0][0] 和终点 grid[N-1][N-1] 的值都不会是 -1。

思路及代码

用DP的,难题,不是很懂,这篇题解看完后,列下方程能够理解了,但是代码还是写不出来ORZ

直接贴题解:https://leetcode-cn.com/problems/cherry-pickup/solution/dong-tai-gui-hua-xiang-xi-jie-xi-tu-jie-by-newhar/

class Solution {
public:
    int cherryPickup(vector<vector<int>>& grid) {
        int N = grid.size(), dp[N+1][N+1];
        memset(dp, 0x80, sizeof(dp)); //-2139062144, 作用相当于 INT_MIN
        dp[N-1][N-1] = grid[N-1][N-1]; // 初始边界条件
        for(int sum = 2*N - 3; sum >= 0; --sum)
        for(int i1 = max(0, sum - N + 1); i1 <= min(N-1,sum); ++i1)
        for(int i2 = i1; i2 <= min(N-1,sum); ++i2)
        {
            int j1 = sum - i1, j2 = sum - i2;
            if(grid[i1][j1] == -1 || grid[i2][j2] == -1) 
                dp[i1][i2] = INT_MIN;
            else
                dp[i1][i2] = grid[i1][j1] + (i1 != i2 || j1 != j2)*grid[i2][j2] + max(
                    max(dp[i1][i2+1], dp[i1+1][i2]), 
                    max(dp[i1+1][i2+1], dp[i1][i2])
                );
        }
        return max(0, dp[0][0]);
    }
};

题目3

最大树定义:一个树,其中每个节点的值都大于其子树中的任何其他值。

给出最大树的根节点 root

就像之前的问题那样,给定的树是从表 Aroot = Construct(A))递归地使用下述 Construct(A) 例程构造的:

  • 如果 A 为空,返回 null
  • 否则,令 A[i] 作为 A 的最大元素。创建一个值为 A[i] 的根节点 root
  • root 的左子树将被构建为 Construct([A[0], A[1], ..., A[i-1]])
  • root 的右子树将被构建为 Construct([A[i+1], A[i+2], ..., A[A.length - 1]])
  • 返回 root

请注意,我们没有直接给定 A,只有一个根节点 root = Construct(A).

假设 B 是 A 的副本,并附加值 val。保证 B 中的值是不同的。

返回 Construct(B)

 

示例 1:

输入:root = [4,1,3,null,null,2], val = 5
输出:[5,4,null,1,3,null,null,2]
解释:A = [1,4,2,3], B = [1,4,2,3,5]

示例 2:

输入:root = [5,2,4,null,1], val = 3
输出:[5,2,4,null,1,null,3]
解释:A = [2,1,5,4], B = [2,1,5,4,3]

示例 3:

输入:root = [5,2,3,null,1], val = 4
输出:[5,2,4,null,1,3]
解释:A = [2,1,5,3], B = [2,1,5,3,4]

 

提示:

  1. 1 <= B.length <= 100

思路及代码

比根节点要大,直接在当前这里新建节点了,否则向右递归

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* insertIntoMaxTree(TreeNode* root, int val) {
        if(root == NULL){
            return new TreeNode(val);
        }else{
            if(root->val < val){
                TreeNode* _root = new TreeNode(val);
                _root->left = root;
                return _root;
            }else{
                TreeNode* _right = insertIntoMaxTree(root->right, val);
                root->right = _right;
                return root;
            }
        }
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值