算法学习(1):一个数的幂除以质数(10^9+7)的余数

10^9+7 问题

在算法类的问题中,当一个数的值比较大时,很多情况下都会需要把得到的结果除以10^9+7,将余数输出出来。选择10^9+7的原因很简单,因为它是一个质数。
如果这种算法是通过求一个数的幂来实现的,最后可能就会非常耗费时间。比如当幂次高达上万时,先求出结果,再求余数往往是不现实的。因此,针对对于这类求幂的余数的问题,特地写出一种算法,以降低程序运行的时间。
题目:
输入一个数x,以及幂次y,一个质数p,求(x^y mod p), 要求时间复杂度为O(log(y))。
示例:
Input:x=2,y=3,p=5
Output:1

Input: x=5, y=10000, p=1000000007
Output:1
思路:根据 ab mod p=(a mod p)*(b mod p),将原来的的求幂完之后再进行求余的算法,改进成,每乘两次进行一次求余运算。
代码:

def power(x, y, p):
    res = 1     # Initialize result

    x = x % p  #Update x if it is more than or 
                # equal to p

    while (y > 0):
        # If y is odd, multiply x with result
        if (y & 1):
            res = (res*x) % p 
            y=y-1
        # y must be even now
        y = y>>1  # y = y/2
        x = (x*x) % p  
    return res

运行结果良好。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值