可解释的机器学习(三):可解释的模型-逻辑回归

本文深入探讨了逻辑回归在可解释的机器学习中的应用,解释了如何通过逻辑函数将线性模型转换为概率估计。讨论了特征权重如何影响概率,并对比了逻辑回归与其他线性模型在解释性和预测性能上的优缺点。
摘要由CSDN通过智能技术生成

可解释的机器学习(三):可解释的模型-逻辑回归

线性模型用于分类的问题:不输出概率,但将它类视为数字(0和1),并你和最佳超平面以最小化点和超平面之间的的距离。所以它知识在点之间插值,不能将它们解释为概率。

分类的解决问题是逻辑回归。它不是拟合直线或超平面,而是使用逻辑函数将线性方程的输出挤压到0和1之间。
l o g i s t i c ( η ) = 1 1 + e x p ( − η ) logistic(\eta) = \frac1{1+exp(-\eta)} logistic(η)=1+exp(η)1

P ( y ( i ) = 1 ) = 1 1 + e x p ( − ( β 0 + β 1 x 1 ( i ) + ⋯ + β p x p ( i ) ) ) P(y^{(i)} = 1)=\frac1{1+exp(-(\beta_0 + \beta_1x_1^{(i)}+\dots+\beta_px_p^{(i)}))} P(y(i)=1)=1+exp((β0+β1x1(i)++βpxp(i)))1

解释

权重不再线性地影响概率,加权和由逻辑函数转换为概率。

为解释重新构造方程:
l o g ( P ( y = 1 ) 1 − P ( y = 1 ) ) = l o g ( P ( y = 1 ) P ( y = 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值