极限学习机综述
简介
神经网络是由具有适应性的简单单元组成的广泛并行互联的网络,它的组织能过够模拟生物神经系统对真实世界物体所作出的交互反应[1]。它由大量简单的处理单元(神经元)相互连接,具有极为强大的学习功能。
但在对最优化网络结构使得网络结构的误差达到最小且能获得更好的泛化能力的处理问题在业界一直是一个热点的研究问题。基于此,文献[2]提出一种新的学习方法,名为极限学习机(Extreme learning machine),该算法随机选取输入层的权重和隐藏层的偏置,最后通过最小二乘法直接计算输出层的权值。
单隐藏层前馈神经网络
单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Networks ,SLFN)在输入层和输出层中间只有一个隐藏层。对于 N N N个不同的样本 ( x i , t i ) (x_i,t_i) (xi,ti),其中 x i = [ x i 1 , x i 2 , … , x i m ] T ∈ R n x_i=[x _{i1},x_{i2},\ldots,x_{im}]^T\in R^n xi=[xi1,xi2,…,xim]T∈Rn, t i = [ t i 1 , t i 2 , … , t i m ] ∈ R m t_i=[t_{i1},t_{i2},\ldots,t_{im}]\in R^m ti=[ti1,ti2,…,tim]∈Rm,一个隐藏层结点数目为 N ~ \widetilde{N} N
、激励函数为 g ( x ) g(x) g(x)的SLFN的模型为:
∑ i = 1 N β i g i ( x j ) = ∑ i = 1 N β i g ( w i ⋅ x j + b i ) = t j , j = 1 , 2 , ⋯ , N \sum_{i=1}^{N} \beta_ig_i(x_j) = \sum_{i=1}^{N}\beta_ig(w_i\cdot x_j + b_i)=t_j,j=1,2,\cdots,N i=1∑Nβigi(xj)=i=1∑Nβig(wi⋅xj+bi)=tj,j=1,2,⋯,N
其中 w i = [ w i 1 , w i 2 , … , w i n ] T w_i = [w_{i1},w_{i2},\ldots,w_{in}]^T wi=[wi1,wi2,…,win]