极限学习机的一篇小综述

本文综述了极限学习机(ELM)的概念,详细介绍了单隐藏层前馈神经网络(SLFN)及其在预测模型中的应用。ELM算法通过随机初始化输入权重和隐藏层偏置,然后利用最小二乘法直接计算输出权重,具有训练速度快、泛化能力强的特点。文章探讨了ELM在国内外预测领域的广泛应用,包括能源消耗、电力负荷、股价预测、气象数据分析等,同时指出ELM的优缺点,如可能存在的过拟合问题和用户可控性差等。
摘要由CSDN通过智能技术生成

极限学习机综述

简介

神经网络是由具有适应性的简单单元组成的广泛并行互联的网络,它的组织能过够模拟生物神经系统对真实世界物体所作出的交互反应[1]。它由大量简单的处理单元(神经元)相互连接,具有极为强大的学习功能。

但在对最优化网络结构使得网络结构的误差达到最小且能获得更好的泛化能力的处理问题在业界一直是一个热点的研究问题。基于此,文献[2]提出一种新的学习方法,名为极限学习机(Extreme learning machine),该算法随机选取输入层的权重和隐藏层的偏置,最后通过最小二乘法直接计算输出层的权值。

单隐藏层前馈神经网络

单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Networks ,SLFN)在输入层和输出层中间只有一个隐藏层。对于 N N N个不同的样本 ( x i , t i ) (x_i,t_i) (xi,ti),其中 x i = [ x i 1 , x i 2 , … , x i m ] T ∈ R n x_i=[x _{i1},x_{i2},\ldots,x_{im}]^T\in R^n xi=[xi1,xi2,,xim]TRn t i = [ t i 1 , t i 2 , … , t i m ] ∈ R m t_i=[t_{i1},t_{i2},\ldots,t_{im}]\in R^m ti=[ti1,ti2,,tim]Rm,一个隐藏层结点数目为 N ~ \widetilde{N} N 、激励函数为 g ( x ) g(x) g(x)的SLFN的模型为:
∑ i = 1 N β i g i ( x j ) = ∑ i = 1 N β i g ( w i ⋅ x j + b i ) = t j , j = 1 , 2 , ⋯   , N \sum_{i=1}^{N} \beta_ig_i(x_j) = \sum_{i=1}^{N}\beta_ig(w_i\cdot x_j + b_i)=t_j,j=1,2,\cdots,N i=1Nβigi(xj)=i=1Nβig(wixj+bi)=tj,j=1,2,,N
其中 w i = [ w i 1 , w i 2 , … , w i n ] T w_i = [w_{i1},w_{i2},\ldots,w_{in}]^T wi=[wi1,wi2,,win]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值