Talk预告 | 北京大学刘博&UCL冯熙栋-TorchOpt,一个高效的可微优化库

4月13日,北京大学和伦敦大学学院的研究人员将在TechBeat人工智能社区分享TorchOpt,这是一个高效的可微优化库。Talk将涉及可微编程的背景、TorchOpt的设计与比较以及其实现的框架细节。参与者可在Talk期间提问交流,获取更多关于TorchOpt的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

本期为TechBeat人工智能社区490线上Talk!

北京时间4月13(周四)20:00北京大学智能科学与技术研究助理—刘博伦敦大学学院 (UCL) 计算机博士生—冯熙栋的Talk将准时在TechBeat人工智能社区开播!

他们与大家分享的主题是: “TorchOpt,一个高效的可微优化库”,届时将分享TorchOpt 总体介绍与已有工作的比较。

Talk·信息

主题:TorchOpt,一个高效的可微优化库

嘉宾:北京大学智能科学与技术研究助理—刘博

伦敦大学学院(UCL)计算机博士生—冯熙栋

时间:北京时间 4月13日 (周四) 20:00

地点:TechBeat人工智能社区

http://www.techbeat.net/

 长按识别二维码,一键预约TALK!

Talk·介绍

可微编程是一种高级语言内自动计算函数导数的技术。近年来,它已经在机器学习社区中越来越受欢迎:在神经网络反向传播、概率编程和贝叶斯推理中都得到了广泛应用。可微编程框架赋予了机器学习及其应用更强的能力,高效且可组合的自动微分工具的可用性促进了优化、可微模拟器、工程和科学的发展。

本次talk大纲如下:

1. 可微优化库搭建的研究动机与挑战

2. TorchOpt 总体介绍与已有工作的比较

3. TorchOpt 设计思路与框架细节

Talk·预习资料

1. Paper: 

https://openreview.net/pdf?id=skhQB3ALAP

2. Code: 

https://github.com/metaopt/torchopt

3. Docs:

https://torchopt.readthedocs.io/

4. Examples: 

https://github.com/metaopt/torchopt/tree/main/examples

5. Tutorials:

https://github.com/metaopt/torchopt/tree/main/tutorials

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

刘博

北京大学智能科学与技术研究助理

我是一名即将在新加坡国立大学计算机科学系攻读博士学位的学生。我的研究兴趣主要集中在强化学习、认知推理和机器学习系统及其在复杂真实世界环境中的应用方面。在此之前,我曾在张海峰老师和汪军教授指导下担任研究助理,并有幸与杨耀东老师密切合作。我在2020年获得了北京大学智能科学与技术专业的学士学位和经济学专业的学士学位,在那里我师从卢宗青老师。在业余时间,我喜欢踢足球。我也乐于与人合作,探索强化学习在各个领域的可能性。

个人主页:

https://benjamin-eecs.github.io/

冯熙栋

伦敦大学学院 (UCL) 计算机 博士生

目前是伦敦大学学院三年级博士生,导师为汪军教授,本科毕业于清华大学自动化系。研究方向包括强化学习,元学习,多智能体与多模态。

个人主页:

https://github.com/waterhorse1

 长按识别二维码,一键预约TALK!

-The End-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值