ICCV 2023 | MoCoDAD:一种基于人体骨架的运动条件扩散模型,实现高效视频异常检测

论文链接: https://arxiv.org/abs/2307.07205

视频异常检测(Video Anomaly Detection,VAD)扩展自经典的异常检测任务,由于异常情况样本非常少见,因此经典的异常检测通常被定义为一类分类问题(One-Class Classification,OCC)。而对于VAD而言,属于异常情况的样本更是非常罕见,因此常见的方法仅使用大量的正常样本进行训练,这些方法会将正常视频的隐藏特征限制在一个有限的空间内,然后通过距离、概率分布差异、重构和预测误差等度量方式将空间之外的样本检测为异常。

本文介绍一篇发表在ICCV 2023上的工作,提出了一种全新的视频异常检测方法,称为运动条件引导的扩散模型MoCoDAD。该模型主要针对于视频中人体的骨骼表示进行建模,并假设视频中出现的正常现象与异常现象都是多模态的,提出使用扩散模型来对人体未来姿态进行预测。通过将视频中行人的历史运动作为条件,利用扩散过程中的迭代更新机制来拟合人体运动并生成未来帧,当生成的运动骨架信息与真实未来运动骨架信息差异较大时,就可以认定为检测到异常。作者在4个标准的人体骨架视频异常检测基准:UBnormal、HR-UBnormal、HR-STC和HR-Avenue上进行了大量的实验,证明MoCoDAD已达SOTA效果。

01. 引言

虽然计算机视觉近些年发展非常迅速,但视频异常检测仍然是一项具有挑战性的任务,这其中主要有两大原因:

(1)异常的定义非常主观,并且通常会根据上下文和应用场景的改变而变化,因此很难对其进行普遍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值