Talk|加州大学洛杉矶分校鲁盼:基于大型语言模型的多模态数学推理

本期TechBeat人工智能社区的Talk聚焦于加州大学洛杉矶分校博士生鲁盼的演讲,他分享了基于大型语言模型的多模态数学推理的最新进展,包括模型在数学推理任务中的表现、多模态基准、算法增强及未来研究方向。
摘要由CSDN通过智能技术生成

本期为TechBeat人工智能社区579线上Talk。

北京时间3月14日(周四)20:00,加州大学洛杉矶分校博士生鲁盼的Talk已准时在TechBeat人工智能社区开播!

他与大家分享的主题是: “基于大型语言模型的多模态数学推理,向大家系统地介绍了多模态的数学推理的进展和挑战。

Talk·信息

主题:基于大型语言模型的多模态数学推理

嘉宾:加州大学洛杉矶分校 鲁盼

时间:北京时间 3月14日(周四)20:00

地点:TechBeat人工智能社区

点击下方链接,即可观看视频!

TechBeatTechBeat是荟聚全球华人AI精英的成长社区,每周上新来自顶尖大厂、明星创业公司、国际顶级高校相关专业在读博士的最新研究工作。我们希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。icon-default.png?t=N7T8https://www.techbeat.net/talk-info?id=857

Talk·介绍

近来,大型语言模型在很多推理任务,特别是在数学推理领域上取得了令人瞩目的表现。例如,GPT-4在初等数学推理基准GSM8K中实现了92.0%的准确率。而在多模态的数学推理领域,我们对大型语言模型和大型多模态模型的认识还不充分。本讲座将重点介绍这些模型在多模态的数学推理的进展和挑战,以及如何提出高效的算法来增强它们的推理能力。

Talk大纲

1、介绍大型语言模型在数学推理领域的最新进展和挑战

2、介绍多模态数学推理领域的代表性基准:ScienceQA、Geometry3K和TabMWP等

3、介绍增强大型语言模型推理能力的代表性算法:Chameleon、Inter-GPS和PromptPG

4、介绍最新视觉场景下的数学推理基准:Mathvista

5、总结

Talk·预习资料

图片

论文链接:

https://aclanthology.org/2021.acl-long.528/

图片

论文链接:

https://arxiv.org/abs/2110.13214

图片

论文链接:

https://arxiv.org/abs/2209.09513

图片

论文链接:

https://arxiv.org/pdf/2209.14610.pdf

图片

论文链接:

https://arxiv.org/abs/2307.10635

图片

论文链接:

https://arxiv.org/abs/2304.09842

图片

论文链接:

https://arxiv.org/abs/2310.02255

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

图片

鲁盼

加州大学洛杉矶分校·博士生

鲁盼,加州大学洛杉矶分校(UCLA)在读博士生。研究方向为自然语言处理和机器推理,包括大型语言模型、数学推理和多模态学习。他在ICLR、NeurIPS、ACL、EMNLP、CVPR、AAAI和KDD等会议上发表了多篇论文。他是南加自然语言处理大会(SoCal NLP)程序主席、NeurIPS 2021-2023 MATH-AI研讨会的联合主席、以及CVPR 2024 TAVI研讨会的联合主席。他曾获得过Amazon博士奖学金、Bloomberg博士奖学金、Qualcomm博士奖学金、UCLA毕业奖学金、清华大学优秀毕业论文、徐特立校长奖学金和微软优秀实习生等荣誉。

个人主页: 

https://www.techbeat.net/grzytrkj?id=38187


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值