一、题目描述
编写一个算法来判断一个数 n
是不是快乐数。
「快乐数」 定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n
是 快乐数 就返回 true
;不是,则返回 false
。
二、题目解析
我们需要明确一个过程,根据题目的要求,对于任何一个正整数,每一次将该数替换为它每个位置上的数字的平方和,重复这个过程,经过一段时间会一直循环变成同一个数字,以这个数字一直循环!
我们抽象过程变成下面的图像:
再根据题目的要求,分为两类,一类是最后一直循环是1,另一类是最后一直循环的结果不是1.
我们看到上面的图片是不是很自然的联想到之前做过的环形链表,我们这一题不是判断是否忧患,因为最后肯定有环,而是还是根据快慢指针的思想,判断最后相遇的点的值是不是1,如果是1,就返回true,反之就是false。
三、原码
int bitSum(int a)
{
int sum = 0;
while(a)
{
int t = a%10;
sum += t * t;
//sum += (a%10) * (a%10);注意运算符的优先级
a/=10;
}
return sum;
}
bool isHappy(int n) {
//用快慢指针法,判断最后循环的数是否为1
int fast = bitSum(n);
int slow = n;
while(fast != slow)
{
fast = bitSum(bitSum(fast));
slow = bitSum(slow);
}
return slow == 1;
}