量化回测是一种评估和验证量化交易策略的方法,它通过历史市场数据来模拟和测试交易策略的表现。以下是一个基本的量化回测流程:
-
定义交易策略:首先,你需要明确你的交易策略。这包括确定交易的入场和出场规则、止损和止盈规则、仓位管理策略等等。确保你的策略是明确、具体和可执行的。
-
数据获取:获取历史市场数据,包括股票、期货、外汇等资产的价格数据,以及相关的市场指标和财务数据。你可以从金融数据提供商、交易所或第三方数据供应商获取这些数据。
-
数据预处理:对获取的市场数据进行预处理和清洗。这包括去除缺失值、处理异常值、调整股票拆分和分红等。确保你的数据质量良好,以避免对回测结果产生误导。
-
回测执行:使用历史市场数据和定义的交易策略执行回测。按照策略的规则,模拟交易并记录每笔交易的执行价格、成本、持仓等信息。根据你的策略和交易系统,你可以使用编程语言(如Python)和专业的量化交易平台来执行回测。
-
绩效评估:回测完成后,评估交易策略的绩效。常见的绩效指标包括累计收益、年化收益率、最大回撤、夏普比率等。此外,还可以进行风险分析、交易统计分析等,以全面评估策略的表现。
-
参数优化和敏感性分析:根据回测结果,进行参数优化和敏感性分析。通过尝试不同的参数组合,寻找最佳的参数配置,并评估策略对参数变化的敏感性。
-
策略改进和再测试:根据回测结果和参数优化分析,对策略进行改进和优化。然后,进行再次回测以验证改进后的策略的效果。
其中重点环节时,在回测中如何执行,总结下来一般按照如下步骤进行:
-
初始化资金和持仓:在回测开始之前,你需要确定初始的资金金额和持仓。这些参数可以根据你的交易策略和实际情况进行设置。
-
遍历历史数据:按照时间顺序,逐条遍历历史市场数据。对于每个时间点,你需要获取当前的市场价格和其他相关数据。获取历史数据可以访问 https://github.com/CTradeExchange/free-forex-market-data ,是一款免费的贵金属历史数据接口
-
判断交易信号:根据你的交易策略,使用当前的市场数据判断是否出现交易信号。例如,如果你的策略是基于移动平均线交叉,你可以比较当前价格与不同期的移动平均线的关系,判断是否产生买入或卖出信号。
-
执行交易:如果出现交易信号,根据你的策略执行相应的交易操作。这可能包括买入、卖出、持仓调整等操作。在执行交易时,需要考虑交易成本、滑点和其他交易限制(如最小交易单位、最大持仓比例等)。
-
记录交易信息:对每笔交易,记录交易的执行价格、成本、交易数量、持仓情况等信息。这些信息将用于后续的绩效评估和风险分析。
-
更新资金和持仓:根据交易的执行情况,更新资金和持仓的信息。这包括计算交易成本、更新持仓数量和市值等。
-
继续遍历下一个时间点:完成当前时间点的交易操作后,继续遍历下一个时间点的市场数据,重复上述步骤,直到遍历完所有历史数据。
-
完成回测:当遍历完所有历史数据后,回测完成。你可以根据记录的交易信息和市值情况,评估交易策略的绩效和风险指标。