16. 贪心(Greedy)+分治(Divide And Conquer)

1 贪心
  1. 贪心策略,也称为贪婪策略,每一步都采取当前状态下最优的选择(局部最优解),从而希望推导出全局最优解
  2. 贪心策略并不一定能得到全局最优解
    1. 因为一般没有测试所有可能的解,容易过早做决定,所以没法达到最佳解
    2. 贪图眼前局部的利益最大化,看不到长远未来,走一步看一步
  3. 优点:简单、高效、不需要穷举所有可能,通常作为其他算法的辅助算法来使用
  4. 缺点:鼠目寸光,不从整体上考虑其他可能,每次采取局部最优解,不会再回溯,因此很少情况会得到最优解
  5. 贪心的应用
    1. 哈夫曼树
    2. 最小生成树算法:Prim、Kruskal
    3. 最短路径算法:Dijkstra
1.1 练习1 – 最优装载问题(加勒比海盗)
  1. 在北美洲东南部,有一片神秘的海域,是海盗最活跃的加勒比海
    1. 有一天,海盗们截获了一艘装满各种各样古董的货船,每一件古董都价值连城,一旦打碎就失去了它的价值。
    2. 海盗船的载重量为 W,每件古董的重量为 𝑥 i ,海盗们该如何把尽可能多数量的古董装上海盗船
    3. 比如 W 为 30,𝑥 i 分别为 3、5、4、10、7、14、2、11
  2. 贪心策略:每一次都优先选择重量最小的古董
    1. 选择重量为 2 的古董,剩重量 28
    2. 选择重量为 3 的古董,剩重量 25
    3. 选择重量为 4 的古董,剩重量 21
    4. 选择重量为 5 的古董,剩重量 16
    5. 选择重量为 7 的古董,剩重量 9
    6. 最多能装载 5 个古董
  3. Pirate
package com.mj;

import java.util.Arrays;

public class Pirate {
	public static void main(String[] args) {
		int[] weights = {3, 5, 4, 10, 7, 14, 2, 11};
		Arrays.sort(weights);
		int capacity = 30, weight = 0, count = 0;
		
		for (int i = 0; i < weights.length && weight < capacity; i++) {
			int newWeight = weight + weights[i];
			if (newWeight <= capacity) {
				weight = newWeight;
				count++;
				System.out.println(weights[i]);
			}
		}
		System.out.println("一共选了" + count + "件古董");
	}
}

1.2 练习2 – 零钱兑换
  1. 例一:假设有 25 分、10 分、5 分、1 分的硬币,现要找给客户 41 分的零钱,如何办到硬币个数最少?
  2. 贪心策略:每一次都优先选择面值最大的硬币
    1. 选择 25 分的硬币,剩 16 分
    2. 选择 10 分的硬币,剩 6 分
    3. 选择 5 分的硬币,剩 1 分
    4. 选择 1 分的硬币
    5. 最终的解是共 4 枚硬币,25 分、10 分、5 分、1 分硬币各一枚
  3. 例二:假设有 25 分、20 分、5 分、1 分的硬币,现要找给客户 41 分的零钱,如何办到硬币个数最少?
  4. 贪心策略:每一次都优先选择面值最大的硬币
    1. 选择 25 分的硬币,剩 16 分
    2. 选择 5 分的硬币,剩 11 分
    3. 选择 5 分的硬币,剩 6 分
    4. 选择 5 分的硬币,剩 1 分
    5. 选择 1 分的硬币
    6. 最终的解是 1 枚 25 分、3 枚 5 分、1 枚 1 分的硬币,共 5 枚硬币
    7. 但实际上本题的最优解是:2 枚 20 分、1 枚 1 分的硬币,共 3 枚硬币
  5. CoinChange
package com.mj;

import java.util.Arrays;

public class CoinChange {
	public static void main(String[] args) {
//		coinChange(new Integer[] {25, 10, 5, 1}, 41);

		coinChange(new Integer[] {25, 20, 5, 1}, 41);
	}
	
	static void coinChange(Integer[] faces, int money) {
		// 1 5 20 25
		Arrays.sort(faces);
		int coins = 0, idx = faces.length - 1;
		while (idx >= 0) {
			while (money >= faces[idx]) {
				System.out.println(faces[idx]);
				money -= faces[idx];
				coins++;
			}
			idx--;
		}
		System.out.println(coins);
	}
	
	static void coinChange2(Integer[] faces, int money) {
		Arrays.sort(faces, (Integer f1, Integer f2) -> f2 - f1); 
		int coins = 0, i = 0;
		while (i < faces.length) {
			if (money < faces[i]) {
				i++;
				continue;
			}

			System.out.println(faces[i]);
			money -= faces[i];
			coins++;
		}
		System.out.println(coins);
	}
	
	static void coinChange1() {
		int[] faces = {25, 5, 10, 1};
		Arrays.sort(faces); // 1, 5, 10, 25
		
		int money = 41, coins = 0;
		for (int i = faces.length - 1; i >= 0; i--) {
			if (money < faces[i]) {
				continue;
			}

			System.out.println(faces[i]);
			money -= faces[i];
			coins++;
			i = faces.length;
		}
		
		System.out.println(coins);
	}
}

1.3 练习3 – 0-1背包
  1. 有 n 件物品和一个最大承重为 W 的背包,每件物品的重量是xi、价值是wi
    1. 在保证总重量不超过 W 的前提下,将哪几件物品装入背包,可以使得背包的总价值最大?
    2. 注意:每个物品只有 1 件,也就是每个物品只能选择 0 件或者 1 件,因此称为 0-1背包问题
  2. 采取贪心策略,的3个方案
    1. 价值主导:优先选择价值最高的物品放进背包
    2. 重量主导:优先选择重量最轻的物品放进背包
    3. 价值密度主导:优先选择价值密度最高的物品放进背包(价值密度 = 价值 ÷ 重量)
      在这里插入图片描述
  3. Article
package com.mj.ks;

public class Article {
	public int weight;
	public int value;
	public double valueDensity;
	public Article(int weight, int value) {
		this.weight = weight;
		this.value = value;
		valueDensity = value * 1.0 / weight;
	}
	@Override
	public String toString() {
		return "Article [weight=" + weight + ", value=" + value + ", valueDensity=" + valueDensity + "]";
	}
}

  1. Knapsack
package com.mj.ks;

import java.util.Arrays;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;

public class Knapsack {
	public static void main(String[] args) {
		select("价值主导", (Article a1, Article a2) -> {
			return a2.value - a1.value;
		});
		select("重量主导", (Article a1, Article a2) -> {
			return a1.weight - a2.weight;
		});
		select("价值密度主导", (Article a1, Article a2) -> {
			return Double.compare(a2.valueDensity, a1.valueDensity);
		});
	}
	
	static void select(String title, Comparator<Article> cmp) {
		Article[] articles = new Article[] {
			new Article(35, 10), new Article(30, 40),
			new Article(60, 30), new Article(50, 50),
			new Article(40, 35), new Article(10, 40),
			new Article(25, 30)
		};
		Arrays.sort(articles, cmp);
		
		int capacity = 150, weight = 0, value = 0;
		List<Article> selectedArticles = new LinkedList<>();
		for (int i = 0; i < articles.length && weight < capacity; i++) {
			int newWeight = weight + articles[i].weight;
			if (newWeight <= capacity) {
				weight = newWeight;
				value += articles[i].value;
				selectedArticles.add(articles[i]);
			}
		}
		
		System.out.println("【" + title + "】");
		System.out.println("总价值:" + value);
		for (int i = 0; i < selectedArticles.size(); i++) {
			System.out.println(selectedArticles.get(i));
		}
		System.out.println("-----------------------------");
	}
}

2 分治
  1. 分治,也就是分而治之。它的一般步骤是
    1. 将原问题分解成若干个规模较小的子问题(子问题和原问题的结构一样,只是规模不一样)
    2. 子问题又不断分解成规模更小的子问题,直到不能再分解(直到可以轻易计算出子问题的解)
    3. 利用子问题的解推导出原问题的解
  2. 因此,分治策略非常适合用递归
  3. 需要注意的是:子问题之间是相互独立的
  4. 分治的应用
    1. 快速排序
    2. 归并排序
    3. Karatsuba算法(大数乘法)
      在这里插入图片描述
  5. 主定理(Master Theorem)
    1. 假设:使用分治解决问题时,数据规模为n,分解成 a 个规模为n/b的子问题,然后在O(n ^d )时间内将子问题的解合并起来
    2. 也就是说算法运行时间为:T(n) = aT(n/b)+O(n^d),a > 0,b > 1,d ≥ 0,那么有如下时间复杂度计算公式
      1. d和logb(a)如果不相等,复杂度就是n的最大那个数次方
      2. 如果相等,就是n的d次方乘logn
        在这里插入图片描述
    3. 比如归并排序的运行时间是:T (n) = 2T(n/2)+O(n),a = 2,b = 2,d = 1 ,所以 T (n) = O(nlogn)
  6. 采取分治策略性能提升的原因
    1. 因为我们知道传统的冒泡排序,时间复杂度为O(n^ 2)
    2. 那么对n/2个数据排序,其实复杂度会降为O((n/2)^2),也就是O((n ^2)/4)
    3. 因此将数据分成两份,分别排序,总时间复杂度就是O((n^2)/2)+O(merge)(合并操作的时间复杂度)
    4. 此时可以想象,只要合并操作的时间复杂度只要不超过O((n^2)/2),那么分治的效率就会比原来的更高
    5. 所以说分治的效率主要取决于合并操作的时间复杂度
2.1 练习1 – 最大连续子序列和
  1. 给定一个长度为 n 的整数序列,求它的最大连续子序列和,比如 –2、1、–3、4、–1、2、1、–5、4 的最大连续子序列和是 4 + (–1) + 2 + 1 = 6
  2. 这道题也属于最大切片问题(最大区段,Greatest Slice)
  3. 概念区分
    1. 子串、子数组、子区间必须是连续的
    2. 子序列是可以不连续的,但必须是有序的,必须从左到右选数据
  4. 解法1 – 暴力出奇迹:空间复杂度O(1),时间复杂度O(n^ 3),优化后达到O(n^2)
  5. 解法2 – 分治
    1. 将序列均匀地分割成 2 个子序列,[begin , end) = [begin , mid) + [mid , end),mid = (begin + end) >> 1
    2. 那么[begin , end) 最大子序列有三种可能
      1. 第一种:子序列元素全在[begin , mid)
      2. 第二种:子序列元素全在[mid , end)
      3. 第三种:子序列元素一部分在[begin , mid),一部分在[mid , end)
    3. 将这三种情况的最大子序列的和,做比较,最大的就应该是其真正的最大子序列
    4. 第一种和第二种情况可以递归来查找最大子序列和,而第三种情况,可以遍历整个左边和右边就可以得到最大子序列值
    5. T(n)=2T(n/2)+O(n),所以时间复杂度为O(nlogn),空间复杂度为O(logn)
      在这里插入图片描述
  6. Main
package com.mj;

public class Main {
	public static void main(String[] args) {
		int[] nums = {-2, 1, -3, 4, -1, 2, 1, -5, 4 };
		System.out.println(maxSubArray(nums));
	}
	
	static int maxSubArray(int[] nums) {
		if (nums == null || nums.length == 0) return 0;
		return maxSubArray(nums, 0, nums.length);
	}
	
	/**
	 * 求解[begin, end)中最大连续子序列的和
	 * T(n) = T(n/2) + T(n/2) + O(n)
	 * T(n) = 2T(n/2) + O(n)
	 * logba = 1  d = 1
	 */
	static int maxSubArray(int[] nums, int begin, int end) {
//		if (end - begin < 2) return nums[begin];
//		int mid = (begin + end) >> 1;
//		int leftMax = Integer.MIN_VALUE;
//		int leftSum = 0;
//		for (int i = mid - 1; i >= begin; i--) {
//			leftSum += nums[i];
//			leftMax = Math.max(leftMax, leftSum);
//		}
//		
//		int rightMax = Integer.MIN_VALUE;
//		int rightSum = 0;
//		for (int i = mid; i < end; i++) {
//			rightSum += nums[i];
//			rightMax = Math.max(rightMax, rightSum);
//		}

		if (end - begin < 2) return nums[begin];
		int mid = (begin + end) >> 1;
		//查找最大连续子序列时横跨mid两端的这种情况,mid左边的最大值和mid右边的最大值
		int leftMax = nums[mid - 1];
		int leftSum = leftMax;
		//左边部分,需要从右不断向左加,找到最大值
		for (int i = mid - 2; i >= begin; i--) {
			leftSum += nums[i];
			leftMax = Math.max(leftMax, leftSum);
		}
		int rightMax = nums[mid];
		int rightSum = rightMax;
		//右边部分,需要从左往右加,找到最大值
		for (int i = mid + 1; i < end; i++) {
			rightSum += nums[i];
			rightMax = Math.max(rightMax, rightSum);
		}
		// 将数组从中间分成两半,最大子序列的元素分部,只有三种情况,要么都在左边,要么都在右边,要么左边一部分,右边一部分
		// 将都在左边、都在右边、以及在中间三种情况对应的值都得到,比对一下,哪个大,哪个就是最大子序列值
		return Math.max(leftMax + rightMax, 
					Math.max(
					maxSubArray(nums, begin, mid), 
					maxSubArray(nums, mid, end))
				);
	}
	
	static int maxSubarray2(int[] nums) {
		if (nums == null || nums.length == 0) return 0;
		int max = Integer.MIN_VALUE;
		for (int begin = 0; begin < nums.length; begin++) {
			int sum = 0;
			for (int end = begin; end < nums.length; end++) {
				// sum是[begin, end]的和
				sum += nums[end];
				max = Math.max(max, sum);
			}
		}
		return max;
	}
	
	static int maxSubarray1(int[] nums) {
		if (nums == null || nums.length == 0) return 0;
		int max = Integer.MIN_VALUE;
		for (int begin = 0; begin < nums.length; begin++) {
			for (int end = begin; end < nums.length; end++) {
				// sum是[begin, end]的和
				int sum = 0;
				for (int i = begin; i <= end; i++) {
					sum += nums[i];
				}
				max = Math.max(max, sum);
			}
		}
		return max;
	}
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值