温故知新系列
文章平均质量分 92
hanzy88
这个作者很懒,什么都没留下…
展开
-
License介绍
原文:http://www.liferay.com/zh/community/forums/-/message_boards/message/4775410什么是License许多混乱就始于你不知道License到底是什么,到底有什么含义。当你对你的产品使用License时,并不意味着你放弃了任何权利,你依然对其拥有原著作权。License只是授予他们于特定权利来使用你的产品。License...转载 2019-10-24 17:55:25 · 23296 阅读 · 0 评论 -
温故知新:python系列(2)
本系列文章将在作者学习基础上,将主要引荐菜鸟教程的内容链接:http://www.runoob.com/python3/python3-tutorial.html感谢分享基本数据类型Python中变量不需要预先声明类型,但在使用前同样要预先赋值,赋值使用等号“ = ”:a = 1# 整型变量b = 1.0# 浮点型变量c = "wtf"# 字符串同样,Py...原创 2018-03-20 21:56:03 · 472 阅读 · 0 评论 -
Deep Learning with Python 系列笔记(五):处理文本和序列数据
处理文本文本是最广泛的序列数据形式之一。它可以被理解为一个字符序列,或者一个单词序列,尽管它在单词的级别上是最常见的。深度学习序列处理模型可以利用文本来生成一种基本的自然语言理解形式,充分适用于从文档分类、情绪分析、作者识别,甚至是问题回答(在受约束的上下文)中。与所有其他的神经网络一样,深度学习模型不以输入原始文本作为输入:它们只处理数字张量。矢量化文本是将文本转换为数字张量的过程,可以...原创 2018-09-28 10:56:35 · 481 阅读 · 0 评论 -
Deep Learning with Python 系列笔记(四):卷积处理可视化
可视化中间激活层,包括在一个网络中显示由不同convolution和pooling 层输出的特征映射,给定一个特定的输入(一个层的输出通常称为它的“activation”,即激活函数的输出)。这就给出了如何将输入分解到网络所学习的不同 filters 的视图。我们想要可视化的这些功能图有3个维度:宽度、高度和深度(通道)。每个通道都编码相对独立的特征,因此,作为二维图像,可视化这些特征图的正确方法...原创 2018-09-28 10:56:28 · 1604 阅读 · 0 评论 -
Deep Learning with Python 系列笔记(三):计算机视觉
计算机视觉的深度学习我们将深入探讨卷积的原理以及为什么它们在计算机视觉任务中如此成功。但首先,让我们来看看一个非常简单的“convnet”示例,我们将使用我们的convnet来对MNIST数字进行分类。下面的6行代码展示了基本的convnet是什么样子的。它是一系列 Conv 2d和MaxPooling2D层。我们马上就会看到他们具体做了什么。重要的是,一个convnet作为形状的输入张量...原创 2018-09-28 10:56:20 · 2308 阅读 · 2 评论 -
温故知新:python系列(1)
本系列文章将在作者学习基础上,将主要引荐菜鸟教程的内容链接:http://www.runoob.com/python3/python3-tutorial.html感谢分享一. 代码入门第一行"""第一行只有在linux或unix系统下有作用调用python脚本时,使用:./script.py 则#!/usr/bin/python 指定解释器的路径"""#!/usr/b...原创 2018-02-14 13:02:22 · 610 阅读 · 0 评论 -
Deep Learning with Python 系列笔记(二):深度学习基础
机器学习基础评估一个模型通常可以归结为将可用的数据分成三组:训练、验证和测试集。一旦模型准备就绪,将在测试数据上进行最后一次测试。 Hold-out validationnum_validation_samples = 10000# Shuffling the data is usually appropriatenp.random.shuffle(data)# ...原创 2018-09-28 10:56:13 · 667 阅读 · 0 评论 -
Deep Learning with Python 系列笔记(一):深度学习基础
神经网络的初探现在来看一个神经网络的第一个具体例子,它利用了Python库Keras来学习对手写数字进行分类。 Mnist是一个含有10类的28 * 28 灰度图片,可以将“解决”MNIST看作是深度学习的“Hello World”,需要做的是验证实现的算法是否按预期工作。 在Keras上加载Mnist数据集from keras.datasets import mnist...原创 2018-09-28 10:56:04 · 6971 阅读 · 0 评论