表演方阵2

给定一个表示学生排列的矩阵,程序需检查每个学生是否能被看到。如果一个学生不在边缘并且所有相邻的同学都比他高,则该学生不能被看到。代码通过遍历矩阵中心部分进行判断,一旦发现无法看到的学生则输出No,否则输出Yes。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录:

目录:

题目:

代码:

思路:


题目:

题目描述

要表演节目了,老师把同学们排成 nn 排,每排 mm 个人,每个人都有一个身高。

现在给出排好的队形,老师想知道,是否所有同学都能被看到。

一个同学能被看到,当且仅当满足下列条件之一:

  • 这个同学站在最外侧(第一排、最后一排、最左侧一列、最右侧一列)。

  • 站在这个同学正前方、正后方、正左侧、正右侧,且离他最近的四个同学,至少有一个不比他高。

输入格式

第一行,两个整数 nn 和 mm 。

接下来 nn 行,每行 mm 个整数,代表这一排同学的身高。

输出格式

如果所有同学都能被看到,输出 Yes ,否则输出 No 。

样例输入1

3 4
1 2 3 6
4 2 4 6
5 6 3 6

样例输出1

Yes

样例输入2

3 3
1 2 1
2 1 2
1 2 1

样例输出2

No

数据限制

对于 100%100% 的数据,1≤n,m≤1000,1≤1≤n,m≤1000,1≤ 同学们的身高 ≤109≤109 。

代码:

#include<bits/stdc++.h>
using namespace std;
int a[1001][1001];
int n,m;
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			cin>>a[i][j];
		}
	}
	for(int i=2;i<=m;i++){
		for(int j=1;j<=n-1;j++){
			if(a[i-1][j]>a[i][j] &&a[i+1][j]>a[i][j] &&a[i][j-1]>a[i][j]&&a[i][j+1]>a[i][j]){
				cout<<"No";
				return 0;
			}
		}
	}
	cout<<"Yes";
	return 0;
}

思路:

就找错误的,找到就return 0;

### 回答1: 蛇形方阵2是一个由数字组成的矩阵,其特点是数字按照蛇形排列,从左上角开始,顺时针方向逐渐增加直到填满整个矩阵。 要解决这个问题,我们需要计算出每个位置上应该填入的数字。具体的步骤如下: 首先,我们需要确定矩阵的大小,即行数和列数。题目中给出的输入数据是一个整数n,我们可以将其开方取整得到矩阵的边长。 然后,我们可以定义一个二维数组matrix,用来存储蛇形方阵。并且初始化为全零。 接下来,我们需要在矩阵中填入正确的数字。我们可以定义两个变量row和col,分别表示当前要填入数字的行数和列数。同时,我们定义一个变量num,用来表示当前要填入的数字,初始值为1。 接下来,我们可以进入一个循环,循环的条件是num <= n * n。在每一次循环中,我们按照蛇形的规则来填入数字。 首先,我们将num填入matrix[row][col]。 然后,我们需要判断下一个位置的行数和列数应该如何变化。根据蛇形的规则,下一个位置的行数和列数应该分为四种情况: 1. 如果col < n-1,且matrix[row][col+1]的值为0,说明右边的位置还没有填入数字,则下一个位置是右边的位置(matrix[row][col+1]); 2. 如果row < n-1,且matrix[row+1][col]的值为0,说明下方的位置还没有填入数字,则下一个位置是下方的位置(matrix[row+1][col]); 3. 如果col > 0,且matrix[row][col-1]的值为0,说明左边的位置还没有填入数字,则下一个位置是左边的位置(matrix[row][col-1]); 4. 如果row > 0,且matrix[row-1][col]的值为0,说明上方的位置还没有填入数字,则下一个位置是上方的位置(matrix[row-1][col])。 根据上述四种情况,我们可以确定下一个位置的行数和列数,并将num加1。 最后,循环结束后,矩阵中的每个位置都填入了正确的数字。 这样,我们就完成了蛇形方阵2的计算,并且通过矩阵matrix可以得到最终的结果。 ### 回答2: 蛇形方阵2是一种特殊的方阵,其特点是将数字按照蛇形排列在方阵中。首先,我们需要确定方阵的大小n,即方阵的行数和列数都为n。然后,我们需要按照从左到右、从上到下、从右到左、从下到上的顺序,将数字依次填入方阵中。 具体的步骤如下: 1. 创建一个n×n的方阵matrix,并初始化为0。 2. 定义变量num,初始值为1,用来表示要填入的数字。 3. 定义四个变量rowStart、rowEnd、colStart和colEnd,分别表示当前要填入数字的起始行、结束行、起始列和结束列,初始值分别为0、n-1、0和n-1。 4. 进入循环,条件为num小于等于n×n。 5. 在循环中,按照从左到右的顺序,将数字逐个填入方阵的第rowStart行,列号从colStart到colEnd。 6. 填入结束后,将rowStart加1,表示下一行要填入数字。 7. 在循环中,按照从上到下的顺序,将数字逐个填入方阵的第colEnd列,行号从rowStart到rowEnd。 8. 填入结束后,将colEnd减1,表示下一列要填入数字。 9. 在循环中,按照从右到左的顺序,将数字逐个填入方阵的第rowEnd行,列号从colEnd到colStart。 10. 填入结束后,将rowEnd减1,表示下一行要填入数字。 11. 在循环中,按照从下到上的顺序,将数字逐个填入方阵的第colStart列,行号从rowEnd到rowStart。 12. 填入结束后,将colStart加1,表示下一列要填入数字。 13. 在循环结束后,方阵matrix中就按照蛇形排列了从1到n×n的数字。 14. 最后,输出方阵matrix即可。 通过以上步骤,我们可以生成一个蛇形方阵。这个方阵具有一定的规律,可以用于一些数字的排列和展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值