sklearn学习
HawardScut
工作啦,有时比较忙没及时回复,望见谅。
展开
-
(五)skrean交叉验证:评估评估器的性能
import numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn import datasetsfrom sklearn import svmiris = datasets.load_iris()iris.data.shape, iris.target.shape((150, 4),...原创 2018-07-28 17:21:34 · 1003 阅读 · 0 评论 -
(六)sklearn调整估计器的超参数
1、比较随机搜索RandomizedSearchCV和超参数估计的网格搜索GridSearchCV 随机搜索和网格搜索探索完全相同的参数空间。参数设置的结果非常相似,而随机搜索 的运行时间则大大降低。随机搜索的性能稍差,尽管这很可能是噪声效应,并且不会延 续到保持测试集。 在实践中,只选择那些被认为最重要的参数。 import numpy as npfrom time imp...原创 2018-07-29 00:19:49 · 1202 阅读 · 0 评论 -
(七)sklearn绘制验证曲线
1、绘制验证曲线 在此图中,随着内核参数gamma的变化,显示了SVM的训练分数和验证分数。 对于非常低的gamma值,可以看到训练分数和验证分数都很低。这被称为欠配合。 gamma的中值是两个分数的高值,即分类器表现相当好。如果gamma太高,则分类 器将过度拟合,这意味着训练分数良好但验证分数较差。import matplotlib.pyplot as pltimport num...原创 2018-07-29 10:39:57 · 6324 阅读 · 0 评论 -
(八)sklearn神经网络
1、分类from sklearn.neural_network import MLPClassifierX = [[0., 0.], [1., 1.]]y = [0, 1]#solver : {‘lbfgs’, ‘sgd’, ‘adam’}, default ‘adam’clf = MLPClassifier(solver='lbfgs', alpha=1e-5, ...原创 2018-07-29 14:51:24 · 3478 阅读 · 0 评论 -
(一)sklearn数据预处理
from sklearn import preprocessingimport numpy as npX_train = np.array([[ 1., -1., 2.], [ 2., 0., 0.], [ 0., 1., -1.]])1、使得均值0,方差1X_scaled = preproce...原创 2018-07-26 13:31:45 · 804 阅读 · 0 评论 -
(二)sklearn降维——PCA和LDA
线性判别分析(LDA)尝试识别占类之间差异最大的属性。特别地,与PCA相比,LDA是使用已知类标签的监督方法。import matplotlib.pyplot as pltfrom sklearn import datasetsfrom sklearn.decomposition import PCAfrom sklearn.discriminant_analysis import L...原创 2018-07-27 16:42:55 · 4101 阅读 · 0 评论 -
(三)skearn-增量PCA
当要分解的数据集太大而无法放入内存时,增量主成分分析(IPCA)通常用作主成分分析 (PCA)的替代。IPCA使用与输入数据样本数无关的内存量为输入数据建立低秩近似。它仍 然依赖于输入数据功能,但更改批量大小可以控制内存使用量。import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import...原创 2018-07-27 17:17:20 · 3939 阅读 · 0 评论 -
(四)skearn-特征选择
1、删除方差低的特征from sklearn.feature_selection import VarianceThresholdX = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]按照公式Var[X]=p(1−p)Var[X]=p(1−p)\mathrm{Var}[X] = p(1 - p)给出,下...原创 2018-07-27 20:17:10 · 1356 阅读 · 0 评论