2017.3.13 反素数ant 失败总结

        这个题放弃的非常彻底,因为我怀疑这需要我没学过的数论,不能白白耽误时间(其实是不想推

        第一眼感觉应该是欧拉函数的变种(去非整除数),但绝对不是线筛(太慢),感觉约数的个数这个条件很迷啊,给人最直观的感受就是:除了gcd和欧拉函数,其他什么都不会。

        看题解:   搜索       、、QAQ

        好吧,是有数论启发的搜索:


好吧,用唯一分解定理竟然可以求约数个数、、、    

其实第一遍想的时候就想到分解质因数了,也隐约察觉到了重复的质因数和其他的质因数比较暧昧的关系 ←_←  

但要具体表达出来确实需要用乘法原理(其实想明白这一步就好办了)

此题关键就是    你要扯明他们的关系,并且确定最大情况质因数的范围、、

还有一个关键点:较小的质因数优于大的质因数:

如7*7*2=98   g(98)不如2*2*7=28  g(28)

 


码:

#include<iostream>
#include<cstdio>
using namespace std;

int cishu[22],dui[22]={0,2,3,5,7,11,13,17,19,23,29,31};
long long ci[22][22],daan1,daan2,n;
void dfs(int shu,long long lin,int qian)
{     if(lin>n)return;
	if(shu==12)
	{  //  cout<<lin;
		int lin2=1;
		for(int i=1;i<=11;i++)
		{
			lin2*=(cishu[i]+1);
	//	  	cout<<cishu[i]<<" ";			
		}
	//	cout<<endl;
		if(lin2==daan1&&lin<daan2)daan2=lin;
		if(lin2>daan1)
		{
			daan1=lin2;
			daan2=lin;	
			//cout<<daan2<<endl;
		}
		return;
	}
	for(int i=0;i<=qian;i++)
	{
		cishu[shu]=i;
		dfs(shu+1,lin*ci[shu][i],i);
	}
}




int main()
{
	
	for(int i=1;i<=20;i++)
	for(int j=0;j<=20;j++)
	{    if(j==0)
	   {ci[i][j]=1;continue;}
	    ci[i][j]=ci[i][j-1]*dui[i];
	}
	//cout<<ci[1][3]<<endl;
	scanf("%d",&n);
	dfs(1,1,20);
	printf("%d",daan2);
	
	
}



 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值