物理实验要求

中国海洋大学物理实验1实验要求

一、做完实验凳子放桌下。

二、人手一本教材。

三、10%预习报告%30操作过程50%实验报告10%实验行为习惯

四、不要伪造数据

五、禁止实验室饮食

六、预习报告内容要求:

1. 实验名称、

2. 实验目的、

3. 实验材料、

4. 实验原理

  • 物理知识背景、
  • 受力分析图光路图电路图三者之一、
  • 实验目的所求数据的计算公式推导、
  • 测量仪器的使用方法和原理)、

5. 实验步骤(详细操作步骤和注意事项)、

6. 数据空表格设计(正式实验时将原始实验数据填入该表格)

七、实验时,将全体实验原始数据记录下来。完成记录后找老师签字检查,算是实验完成。

八、实验报告要求:在预习报告的基础下,

  • 1、完成原始实验数据的记录。
  • 2、数据处理,计算目标物理量的数值,(加分项选做:计算目标物理量的不确定度)
  • 3、实验讨论,分析造成误差的主要原因。
  • 4、实验心得与建议,这一项选做,不计分,可以在这里随意吐槽、提供意见,甚至可以吐槽实验仪器拉垮吐槽老师教学方式(老师说没关系的不会因此扣分)。没有就写“无”

九、误差分析和实验数据保留与舍弃。

  • 对于多组数据 x 1 , x 2 , x 3 , ⋯   , x n x_1,x_2,x_3,\cdots,x_n x1,x2,x3,,xn ,其中任意一条数据的的标准误差:
    σ = S ( x ) = ∑ ( x i − x ‾ ) 2 n − 1 \sigma=S(x)=\sqrt{{\sum(x_i-\overline x)^2}\over{n-1}} σ=S(x)=n1(xix)2

  • 上述数据集中,它们的平均值 x ‾ \overline x x 的标准误差(实际上我们用的更多的就是这个式子):
    σ = S ( x ‾ ) = ∑ ( x i − x ‾ ) 2 n ⋅ ( n − 1 ) \sigma=S({\overline x})=\sqrt{{\sum(x_i-\overline x)^2}\over{n\cdot(n-1)}} σ=S(x)=n(n1)(xix)2

  • 对于 n < 4 n<4 n<4 的数据集,测试次数太少,采用
    σ = S 仪 器 = Δ 仪 器 3 \sigma=S_{仪器}={{\Delta _{仪器}}\over{\sqrt 3}} σ=S=3 Δ

  • 对于 n > 3 n>3 n>3 的数据集中的某一个数据 x i x_i xi ,如果 ∣ x i − x ‾ ∣ > 3 S ( x ‾ ) |x_i-\overline x|>3S(\overline x) xix>3S(x) ,则认为 x i x_i xi 超越了极限误差,应当舍弃。

例如:

数据集: { 2.5 ,   3.0 ,   2.9 ,   2.8 ,   3.1 ,   12.2 } \{2.5,\ 3.0,\ 2.9,\ 2.8,\ 3.1,\ 12.2\} {2.5, 3.0, 2.9, 2.8, 3.1, 12.2}

误差分析:数据集合中数据12.2超过了极限误差,因此剔除数据12.2。剔除后数据集为 { 2.5 ,   3.0 ,   2.9 ,   2.8 ,   3.1 } \{2.5,\ 3.0,\ 2.9,\ 2.8,\ 3.1\} {2.5, 3.0, 2.9, 2.8, 3.1}

十、数据的不确定度计算与传递公式

  • 对于直接测得的平均数据的不确定度,采用
    u x = Δ 仪 器 2 3 + S ( x ‾ ) 2 u_x=\sqrt{{\Delta_{仪器}^2\over 3}+{S(\overline x)}^2} ux=3Δ2+S(x)2

  • 对于通过计算间接得到的数据 N = F ( x , y , z , ⋯   ) N=F(x,y,z,\cdots) N=F(x,y,z,)
    u N = ( ∂ F ∂ x ) 2 u x 2 + ( ∂ F ∂ y ) 2 u y 2 + ( ∂ F ∂ z ) 2 u z 2 + ⋯ u_N=\sqrt{\left({{\partial F}\over {\partial x}}\right)^2u_x^2+\left({{\partial F}\over{\partial y}}\right)^2u_y^2+\left({{\partial F}\over{\partial z}}\right)^2u_z^2+\cdots} uN=(xF)2ux2+(yF)2uy2+(zF)2uz2+

  • 对于 N = F ( x , y , z , ⋯   ) N=F(x,y,z,\cdots) N=F(x,y,z,) 是一个积、商形式的函数,采用 ln ⁡ N = ln ⁡ F ( x , y , z , ⋯   ) \ln N=\ln F(x,y,z,\cdots) lnN=lnF(x,y,z,) 可以极大程度地简化不确定度运算:
    u ln ⁡ N = d ln ⁡ N = d N N ‾ = u N N ‾ = ( ∂ ln ⁡ F ∂ x ) 2 u x 2 + ( ∂ ln ⁡ F ∂ y ) 2 u y 2 + ( ∂ ln ⁡ F ∂ z ) 2 u z 2 + ⋯ u_{\ln N}=d\ln N = {dN \over \overline N}={u_N\over \overline N}\\=\sqrt{\left({{\partial\ln F}\over {\partial x}}\right)^2u_x^2+\left({{\partial {\ln F}}\over{\partial y}}\right)^2u_y^2+\left({{\partial {\ln F}}\over{\partial z}}\right)^2u_z^2+\cdots} ulnN=dlnN=NdN=NuN=(xlnF)2ux2+(ylnF)2uy2+(zlnF)2uz2+
    于是 u N = N ‾ ⋅ ( ∂ ln ⁡ F ∂ x ) 2 u x 2 + ( ∂ ln ⁡ F ∂ y ) 2 u y 2 + ( ∂ ln ⁡ F ∂ 6 p 6 + − z ) 2 u z 2 + ⋯ u_N=\overline N\cdot\sqrt{\left({{\partial {\ln F}}\over {\partial x}}\right)^2u_x^2+\left({{\partial {\ln F}}\over{\partial y}}\right)^2u_y^2+\left({{\partial {\ln F}}\over{\partial6p6+- z}}\right)^2u_z^2+\cdots} uN=N(xlnF)2ux2+(ylnF)2uy2+(6p6+zlnF)2uz2+

十一、数据结果表示的实例

示例一、

用毫米刻度尺和电磁打点计时器记录了气垫滑轨上平衡状态下小车的位置x与时间t的关系表格,计算平均速度v

物理量(仪器分度值)单位\组数12345678
x (0.0005)m2.0102.0212.0302.0372.0522.0602.0732.079
t s1.001.021.041.061.081.101.121.14

数据处理:

​ 用逐差法计算速度 v = Δ x Δ t v={{\Delta x}\over{\Delta t}} v=ΔtΔx

物理量(单位)\组数5-1(1)6-2(2)7-3(3)8-4(4)
Δ x \Delta x Δx (m)0.0410.0390.0430.042
Δ t \Delta t Δt (s)0.080.080.080.08

Δ x ‾ = 1 4 ⋅ ∑ i = 1 4 ( Δ x ) i = 0.0412 ( 50 ) m \overline{\Delta x}={1\over4}\cdot\sum_{i=1}^4 (\Delta x)_i=0.0412(50)m Δx=41i=14(Δx)i=0.0412(50)m //中间计算值多保留1~2位有效数字

Δ 仪 器 = 0.0005 m \Delta_{仪器}=0.0005{\rm m} Δ=0.0005m

u Δ x = Δ 仪 器 2 3 + S ( Δ x ‾ ) 2 = 0.0009 ( 014 ) m u_{\Delta x}=\sqrt{{\Delta_{仪器}^2\over 3}+{S(\overline {\Delta x})}^2}=0.0009(014)\rm m uΔx=3Δ2+S(Δx)2 =0.0009(014)m//最终结果中的不确定度只保留一位,计算过程中的不确定度可以多保留

u Δ t = Δ 计 时 器 2 3 + S ( Δ t ‾ ) 2 = 0 u_{\Delta t}=\sqrt{{\Delta_{计时器}^2\over 3}+{S(\overline {\Delta t})}^2}=0 uΔt=3Δ2+S(Δt)2 =0//此处 Δ t \Delta t Δt是绝对精确数

v ‾ = Δ x ‾ Δ t ‾ = 0.515 ( 625 ) m / s \overline v={\overline{\Delta x}\over \overline{\Delta t}}=0.515(625) \rm m/s v=ΔtΔx=0.515(625)m/s//按最不确定的参数有效小数位数来保留,中间过程可以多保留

u v = ( 1 Δ t ‾ ⋅ u Δ x ) 2 + ( Δ x ‾ Δ t ‾ 2 ⋅ u Δ t ) 2 = 0.07527 u_{v}=\sqrt{(\frac 1 {\overline {\Delta t}}\cdot u_{\Delta x})^2+({\overline {\Delta x}\over {\overline {\Delta t}}^2}\cdot u_{\Delta t})^2}=0.07527 uv=(Δt1uΔx)2+(Δt2ΔxuΔt)2 =0.07527

最终结果表示为v= 0.5156 ± 0.08 ( m / s ) 0.5156\pm 0.08\rm (m/s) 0.5156±0.08(m/s)//最后不确定度保留一位有效数字

计算程序:

//省略了其他部分,只保留了主函数    
int main() {
        //传入数据集
	Element x({0.041, 0.039, 0.043, 0.042}, 0.0005);//精度是0.0005m
	Element t({0.08, 0.08, 0.08, 0.08}, 0.02);
	
    //引入计算公式f(x,t)=x/t
    auto f = [](vector<Element> _array) {
		return _array[0].value / _array[1].value;
	};
    
    //传递计算结果和不确定度给 v,使v=f(x,t)
	auto v = pass1({x, t}, f);
    
    //输出部分
	cout << "x= " << x.value << "\tu_x= " << x.utt << endl;
	cout << "v= " << v.value <<  "\tu_v= " << v.utt << endl;
	return 0;
}

程序结果:

程序结果

示例二、

现已测得铜棒的长度 L L L、直径 d d d、电阻值 R R R,电阻率公式为 ρ = π d 2 4 L R \rho={\pi d^2\over4L}R ρ=4Lπd2R,数据集已给出 L = { 1.2000 m , 1.1996 m , 1.2004 m , 1.2002 m } ( 精 度 为 0.0005 m ) L=\{1.2000m,1.1996m,1.2004m,1.2002m\}(精度为0.0005m) L={1.2000m,1.1996m,1.2004m,1.2002m}(0.0005m)

d = { 0.22 m m , 0.19 m m , 0.17 m m , 0.21 m m , 0.20 m m , 0.21 m m } ( 精 度 为 螺 旋 测 微 器 0.01 m m ) d=\{0.22mm,0.19mm,0.17mm,0.21mm,0.20mm,0.21mm\}(精度为螺旋测微器0.01mm) d={0.22mm,0.19mm,0.17mm,0.21mm,0.20mm,0.21mm}(0.01mm)

R = { 0.65 Ω , 0.64 Ω , 0.60 Ω , 0.64 Ω , 0.67 Ω , 0.66 Ω } ( 精 确 度 等 级 为 0.1 ) R=\{0.65\Omega,0.64\Omega,0.60\Omega,0.64\Omega,0.67\Omega,0.66\Omega\}(精确度等级为0.1) R={0.65Ω,0.64Ω,0.60Ω,0.64Ω,0.67Ω,0.66Ω}(0.1)

数据处理:
L ‾ = 1 4 ∑ i = 1 4 L i = 1.2000 ( 5 ) m ( 计 算 过 程 多 保 留 ) δ L = ∑ i = 1 4 L i 2 − 4 L ‾ 2 4 ∗ ( 4 − 1 ) = 0.00017 m ( 绝 对 误 差 ) u L = Δ 尺 子 2 3 + δ L 2   = 0.0003 ( 4 ) m d 第 三 个 数 据 0.17 偏 差 量 超 过 了 3 δ , 因 此 舍 弃 它 d ‾ = 1 5 ∑ i = 1 5 d i = 0.20 ( 6 ) m m δ d = ∑ i = 1 5 d i 2 − 5 d ‾ 2 5 ∗ ( 5 − 1 ) = 0.0073 m m u d = Δ 螺 旋 测 微 器 2 3 + δ d 2   = 0.007 ( 7 ) m m R 第 三 个 数 据 0.6 偏 差 量 超 过 了 3 δ , 因 此 舍 弃 它 R ‾ = 1 5 ∑ i = 1 5 R i = 0.652 Ω δ R = ∑ i = 1 5 R i 2 − 5 R ‾ 2 5 ∗ ( 5 − 1 )   = 0.00989 Ω u R = ( 0.1 R ‾ ) 2 3 + δ R 2 = 0.0408 ρ = π d 2 4 L R ln ⁡ ρ = ln ⁡ π + 2 ln ⁡ d + ln ⁡ R − ln ⁡ 4 − ln ⁡ L ρ ‾ = π d ‾ 2 4 L ‾ R ‾ = 0.018 ( 1 ) Ω ( m m ) 2 / m u ρ = ρ ( 2 u d d ‾ ) 2 + ( u R R ‾ ) 2 + ( u L L ‾ ) 2 = 0.001 ( 76 ) Ω ( m m ) 2 / m 所 以 最 终 结 果 表 示 为 ρ = 0.018 ± 0.002 Ω ( m m ) 2 / m \overline L=\frac14\sum_{i=1}^4L_i=1.2000(5)m(计算过程多保留)\\ \delta_L= \sqrt{\sum_{i=1}^4{L_i}^2-4\overline L^2\over4*(4-1)}=0.00017m(绝对误差)\\ u_L=\sqrt{{{\Delta _{尺子}}^2\over3}+{\delta_L}^2\ }=0.0003(4)m\\ d第三个数据0.17偏差量超过了3\delta,因此舍弃它\\ \overline d=\frac15\sum_{i=1}^5d_i=0.20(6)mm\\ \delta_d=\sqrt{\sum_{i=1}^5{d_i}^2-5\overline d^2\over5*(5-1)}=0.0073mm\\ u_d=\sqrt{{{{\Delta_{螺旋测微器}}^2}\over3}+{\delta_d}^2\ }=0.007(7)mm\\ R第三个数据0.6偏差量超过了3\delta,因此舍弃它\\ \overline R=\frac15\sum_{i=1}^5R_i=0.652\Omega\\ \delta_R=\sqrt{\sum_{i=1}^5R_i^2-5{\overline R}^2\over5*(5-1)\ }=0.00989\Omega\\ u_R=\sqrt{{{(0.1\overline R)}^2\over3}+{\delta_R}^2}=0.0408\\ \rho={\pi d^2\over 4L}R\\ \ln\rho=\ln\pi+2\ln d+\ln R-\ln4-\ln L\\ \overline\rho={\pi \overline d^2\over 4\overline L}\overline R=0.018(1)\Omega (mm)^2/m\\ u_\rho=\rho\sqrt{{({2u_d\over\overline d})}^2+({u_R\over\overline R})^2+({u_L\over\overline L})^2}=0.001(76)\Omega (mm)^2/m\\ 所以最终结果表示为\rho=0.018\pm0.002\Omega (mm)^2/m\\ L=41i=14Li=1.2000(5)m()δL=4(41)i=14Li24L2 =0.00017m()uL=3Δ2+δL2  =0.0003(4)md0.173δ,d=51i=15di=0.20(6)mmδd=5(51)i=15di25d2 =0.0073mmud=3Δ2+δd2  =0.007(7)mmR0.63δR=51i=15Ri=0.652ΩδR=5(51) i=15Ri25R2 =0.00989ΩuR=3(0.1R)2+δR2 =0.0408ρ=4Lπd2Rlnρ=lnπ+2lnd+lnRln4lnLρ=4Lπd2R=0.018(1)Ω(mm)2/muρ=ρ(d2ud)2+(RuR)2+(LuL)2 =0.001(76)Ω(mm)2/mρ=0.018±0.002Ω(mm)2/m

计算程序:

int main() {
    //引入数据集,程序会自动剔除落在3delta之外的数据
	Element L({1.2, 1.1996, 1.2004, 1.2002}, 0.0005);//最后一项参数是测量工具的精度
	Element d({0.22, 0.19, 0.17, 0.21, 0.20, 0.21}, 0.01);
	Element R({0.65, 0.64, 0.60, 0.64, 0.67, 0.66}, 0.07);
    
    //导入多元函数关系式f(L,d,R)=pi*d*d*R/(4*L)
	auto f = [](vector<Element> a) {
		auto pi = 3.14159, L = a[0].value, d = a[1].value, R = a[2].value;
		return pi * d * d * R / (4 * L);
	};
    
    //建立关系 rho=f(L,d,R)
	auto rho = pass2({L, d, R}, f);//注意这里采用了pass2,而不是pass1,因为积商关系式中,采取先对数再微分的方式可以减少机器计算量,使得结果更精确
    
    //输出环节
	cout << "L= " << L.value << "\tu_L= " << L.utt << endl;
	cout << "d= " << d.value << "\tu_d= " << d.utt << endl;
	cout << "R= " << R.value << "\tu_R= " << R.utt << endl;
	cout << "rho= " << rho.value << "\tu_rho= " << rho.utt << endl;
	return 0;
}

程序结果

程序结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vaster4

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值