高等数学下期中复习题整理

CSDN:@Vaster4

https://blog.csdn.net/haodlc
同样的38题被整理成两套试卷, 查看请点此处
建议用时:3h

多元函数表达式
  1. f ( x + y , y x ) = x 2 − y 2 f\left(x+y,\cfrac yx\right)=x^2-y^2 f(x+y,xy)=x2y2 , 则 f ( x , y ) f(x,y) f(x,y) 的表达式为()

( A )   x 2 ( 1 + y ) 1 − y ( B )   x 2 ( 1 − y ) 1 + y ( C )   y 2 ( 1 + x ) 1 − x ( D )   y 2 ( 1 − x ) 1 + x \begin{aligned} &({\rm A})\ \cfrac {x^2(1+y)}{1-y}&&({\rm B})\ \cfrac{x^2(1-y)}{1+y} &({\rm C})\ \cfrac{y^2(1+x)}{1-x}&&({\rm D})\ \cfrac{y^2(1-x)}{1+x} \end{aligned} (A) 1yx2(1+y)(B) 1+yx2(1y)(C) 1xy2(1+x)(D) 1+xy2(1x)

  1. z = y + f ( x − 1 ) z=\sqrt y+f(\sqrt x-1) z=y +f(x 1),且当 y = 1 y=1 y=1 时, z = x z=x z=x ,则 f ( x ) f(x) f(x) 等于()

( A )   y − 1 ( B )   y ( C )   y + 2 ( D )   y ( y + 2 ) \begin{aligned} &({\rm A})\ \sqrt y-1 &&({\rm B})\ y &({\rm C})\ y+2 &&({\rm D})\ y(y+2) \end{aligned} (A) y 1(B) y(C) y+2(D) y(y+2)


多元函数定义域
  1. 函数 z = arcsin ⁡ ( 2 x ) + 3 x − 2 y 2 ln ⁡ ( 1 − x 2 − y 2 ) z=\arcsin(2x)+\cfrac{\sqrt{3x-2y^2}}{\ln{(1-x^2-y^2)}} z=arcsin(2x)+ln(1x2y2)3x2y2 的定义域为 ‾ . \underline{\qquad\qquad}. .

计算重极限与累次极限
  1. h ( x , y ) = x − y 2 + y 3 2 x + y 2 h(x,y)=\cfrac{x-y^2+y^3}{2x+y^2} h(x,y)=2x+y2xy2+y3,则 lim ⁡ ( x , y ) → ( 0 , 0 ) h ( x , y ) \lim \limits_{(x,y)\rarr (0,0)} h(x,y) (x,y)(0,0)limh(x,y) 等于()

( A )   1 2 ( B )   1 ( C )   − 1 ( D )   2 \begin {aligned} ({\rm A})\ \frac12 &&({\rm B})\ 1 &&({\rm C})\ -1 &&({\rm D})\ 2\\ \end{aligned} (A) 21(B) 1(C) 1(D) 2

  1. f ( x , y ) = y 1 + x y − 1 − y sin ⁡ π x y arctan ⁡ x ( x > 0 , y > 0 ) f(x,y)=\cfrac y{1+xy}-\cfrac{1-y\sin \cfrac{\pi x}y}{\arctan x}(x>0,y>0) f(x,y)=1+xyyarctanx1ysinyπx(x>0,y>0),则 lim ⁡ x → 0 + lim ⁡ y → + ∞ f ( x , y ) = ‾ . \lim \limits_{x\rarr 0^+}\lim\limits_{y\rarr+\infty}f(x,y)=\underline{\qquad\quad}. x0+limy+limf(x,y)=.

  2. 求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x y x + y + 1 − 1 \lim \limits_{(x,y)\rarr(0,0)}\cfrac{xy}{\sqrt{x+y+1}-1} (x,y)(0,0)limx+y+1 1xy ( 若极限不存在, 请说明理由 ).


连续性
  1. 下列函数中,在整个 x O y xOy xOy 平面上处处连续的是()

( A )   z = x 2 y 2 x 2 y 2 + ( x − y ) 2 ( B )   z = ln ⁡ ∣ 1 − x 2 − y 2 ∣ ( C )   z = { sin ⁡ ( x y ) x , x ≠ 0 , y , x = 0 ( D )   z = { x 2 y x 4 + y 2 , x 4 + y 2 ≠ 0 , 0 , x 4 + y 2 = 0 , \begin{aligned} &({\rm A})\ z=\cfrac{x^2y^2}{x^2y^2+(x-y)^2} &&({\rm B})\ z=\ln{|1-x^2-y^2|}\\ &({\rm C})\ z= \begin{cases} \cfrac{\sin (xy)}{x},&x\ne 0,\\ y,&x=0 \end{cases} &&({\rm D})\ z= \begin{cases} \cfrac{x^2y}{x^4+y^2},&x^4+y^2\ne0,\\ 0,&x^4+y^2=0, \end{cases} \end{aligned} (A) z=x2y2+(xy)2x2y2(C) z=xsin(xy),y,x=0,x=0(B) z=ln1x2y2(D) z=x4+y2x2y,0,x4+y2=0,x4+y2=0,

  1. 讨论函数 f ( x , y ) = { 0 , x 为 无 理 数 , y , x 为 有 理 数 f(x,y)=\begin{cases}0,&x为无理数,\\y,&x为有理数\end{cases} f(x,y)={0,y,x,x 的连续性.

  2. 设二元函数 f ( x , y ) f(x,y) f(x,y) G = { ( x , y )   ∣   x 2 + y 2 ≤ 1 } G=\{(x,y)\ |\ x^2+y^2\leq1\} G={(x,y)  x2+y21} 有定义. 若 f ( x , 0 ) f(x,0) f(x,0) x = 0 x=0 x=0 处连续, 且 f y ( x , y ) f_y(x,y) fy(x,y) G G G 上有界, 证明: f ( x , y ) f(x,y) f(x,y) 在点 ( 0 , 0 ) (0,0) (0,0) 处连续.


偏导数定义
  1. 二元函数 f ( x , y ) = { x y x 2 + y 2 , ( x , y ) ≠ ( 0 , 0 ) , 0 , ( x , y ) = ( 0 , 0 ) f(x,y)=\begin{cases}\cfrac{xy}{x^2+y^2},&(x,y)\neq(0,0),\\0,&(x,y)=(0,0)\end{cases} f(x,y)=x2+y2xy,0,(x,y)=(0,0),(x,y)=(0,0) 在点 ( 0 , 0 ) (0,0) (0,0) 处 ( )

( A )   连 续 , 偏 导 数 存 在 ( B )   连 续 , 偏 导 数 不 存 在 ( C )   不 连 续 , 偏 导 数 存 在 ( D )   不 连 续 , 偏 导 数 不 存 在 \begin{aligned} &({\rm A})\ 连续,偏导数存在 &&({\rm B})\ 连续,偏导数不存在\\ &({\rm C})\ 不连续,偏导数存在 &&({\rm D})\ 不连续,偏导数不存在\\ \end{aligned} (A) ,(C) ,(B) ,(D) ,

  1. 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处存在对 x , y x, y x,y 的偏导数, 则 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0) 等于 ( )

( A )   lim ⁡ Δ x → 0 f ( x 0 − 2 Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x ( B )   lim ⁡ Δ x → 0 f ( x 0 , y 0 ) − f ( x 0 − Δ x , y 0 ) Δ x ( B )   lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ x ( D ) lim ⁡ x → x 0 f ( x , y ) − f ( x 0 , y 0 ) x − x 0 \begin{aligned} &({\rm A})\ \lim\limits_{\Delta x\rarr 0}\cfrac{f(x_0-2\Delta x,y_0)-f(x_0,y_0)}{\Delta x} &&({\rm B})\ \lim\limits_{\Delta x\rarr0}\cfrac{f(x_0,y_0)-f(x_0-\Delta x,y_0)}{\Delta x}\\ &({\rm B})\ \lim\limits_{\Delta x\rarr 0}\cfrac{f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)}{\Delta x} &&({\rm D})\lim\limits_{x\rarr x_0}\cfrac{f(x,y)-f(x_0,y_0)}{x-x_0} \end{aligned} (A) Δx0limΔxf(x02Δx,y0)f(x0,y0)(B) Δx0limΔxf(x0+Δx,y0+Δy)f(x0,y0)(B) Δx0limΔxf(x0,y0)f(x0Δx,y0)(D)xx0limxx0f(x,y)f(x0,y0)


偏导数的复合法
  1. 设函数 u ( x , y ) = φ ( x + y ) + φ ( x − y ) + ∫ x − y x + y Ψ ( t ) d t u(x,y)=\varphi(x+y)+\varphi(x-y)+\int_{x-y}^{x+y}\Psi(t){\rm d}t u(x,y)=φ(x+y)+φ(xy)+xyx+yΨ(t)dt , 其中函数 φ \varphi φ 具有二阶导数, Ψ \Psi Ψ 具有一阶导数, 则必有 ( )

( A )   ∂ 2 u ∂ x 2 = − ∂ 2 u ∂ y 2 ( B )   ∂ 2 u ∂ x ∂ y = ∂ 2 u ∂ x 2 ( C )   ∂ 2 u ∂ x ∂ y = ∂ 2 u ∂ y 2 ( D )   ∂ 2 u ∂ x 2 = ∂ 2 u ∂ y 2 \begin{aligned} &({\rm A})\ \frac{\partial^2u}{\partial x^2}=-\frac{\partial^2u}{\partial y^2} &&({\rm B})\ \frac{\partial^2u}{\partial x\partial y}=\frac{\partial^2u}{\partial x^2}\\ &({\rm C})\ \frac{\partial ^2u}{\partial x\partial y}=\frac{\partial^2u}{\partial y^2} &&({\rm D})\ \frac{\partial ^2u}{\partial x^2}=\frac{\partial ^2u}{\partial y^2} \end{aligned} (A) x22u=y22u(C) xy2u=y22u(B) xy2u=x22u(D) x22u=y22u

  1. u = e − x sin ⁡ x y u=e^{-x}\sin\frac xy u=exsinyx, 则 ∂ 2 u ∂ x ∂ y \frac{\partial^2u}{\partial x\partial y} xy2u 在点 ( 2 , 1 π ) (2,\frac1\pi) (2,π1) 处的值为 ‾ . \underline{\qquad}. .

  2. z = f ( x , y ) z=f(x,y) z=f(x,y) 是二次连续可微函数, 又有关系式 u = a y + x ,   v = x − a y u=ay+x,\ v=x-ay u=ay+x, v=xay, 其中 a a a 是不为 0 0 0 的常数. 证明: a 2 ∂ 2 z ∂ x 2 − ∂ 2 z ∂ y 2 = 4 a 2 ∂ 2 z ∂ u ∂ v . a^2\cfrac{\partial^2z}{\partial x^2}-\cfrac{\partial^2z}{\partial y^2}=4a^2\cfrac{\partial^2 z}{\partial u\partial v}. a2x22zy22z=4a2uv2z.


全微分的定义与计算
  1. 设二元函数 z = x e x + y + ( x + 1 ) ln ⁡ ( 1 + y ) z=xe^{x+y}+(x+1)\ln(1+y) z=xex+y+(x+1)ln(1+y), 则 d z ∣ ( 1 , 0 ) = ‾ . {\rm d}z|_{(1,0)}=\underline{\qquad}. dz(1,0)=.

  2. 证明: 函数 f ( x , y ) = { x 2 y x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 f(x,y)=\begin{cases}\cfrac{x^2y}{x^2+y^2},&x^2+y^2\neq0\\0,&x^2+y^2=0 \end{cases} f(x,y)=x2+y2x2y,0,x2+y2=0x2+y2=0 在点 ( 0 , 0 ) (0,0) (0,0) 处连续且偏导数存在, 但在此点不可微.

  3. 验证函数 f ( x , y ) = x 2 + y 2 , ( x , y ) ∈ R 2 f(x,y)=\sqrt{x^2+y^2},(x,y)\in\R^2 f(x,y)=x2+y2 ,(x,y)R2 在点 ( 0 , 0 ) (0,0) (0,0) 处连续, 方向导数都存在, 但偏导数不存在, 当然也不可微.

  4. 确定 α \alpha α 的取值范围, 使得函数 f ( x , y ) = { ( x 2 + y 2 ) α sin ⁡ 1 x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 f(x,y)=\begin{cases}(x^2+y^2)^\alpha\sin\frac{1}{x^2+y^2},&x^2+y^2\neq0\\0,&x^2+y^2=0\end{cases} f(x,y)={(x2+y2)αsinx2+y21,0,x2+y2=0x2+y2=0 在点 ( 0 , 0 ) (0,0) (0,0) 处可微.


多元函数泰勒公式
  1. 设二元函数 f ( x , y ) f(x,y) f(x,y) 在区域 D = { ( x , y )   ∣   x + y < 1 } D=\{(x,y)\ |\ x+y<1\} D={(x,y)  x+y<1} 可微, 且 ∀ ( x , y ) ∈ D \forall(x,y)\in D (x,y)D , 有 ∣ ∂ f ∂ x ∣ ≤ 1 |\cfrac{\partial f}{\partial x}|\leq 1 xf1, ∣ ∂ f ∂ y ∣ ≤ 1. |\cfrac{\partial f}{\partial y}|\le 1. yf1. 证明: 对任意 ( x 1 , y 1 ) , ( x 2 , y 2 ∈ D ) (x_1,y_1),(x_2,y_2\in D) (x1,y1),(x2,y2D), 有 ∣ f ( x 1 , y 1 ) − f ( x 2 , y 2 ) ∣ ≤ ∣ x 2 − x 1 ∣ + ∣ y 2 − y 1 ∣ |f(x_1,y_1)-f(x_2,y_2)|\le|x_2-x_1|+|y_2-y_1| f(x1,y1)f(x2,y2)x2x1+y2y1

驻点、极值点
  1. z = e 2 x ( x + y 2 + 2 y ) z=e^{2x}(x+y^2+2y) z=e2x(x+y2+2y), 则点 ( 1 2 , − 1 ) \left(\frac12,-1 \right) (21,1) 是该函数的 ( )

( A )   驻 点 , 但 不 是 极 值 点 ( B )   驻 点 , 且 是 极 小 值 点 ( C )   驻 点 , 切 实 极 大 值 点 ( D )   偏 导 数 不 存 在 的 点 \begin{aligned} &({\rm A})\ 驻点,但不是极值点 &&({\rm B})\ 驻点,且是极小值点\\ &({\rm C})\ 驻点,切实极大值点 &&({\rm D})\ 偏导数不存在的点 \end{aligned} (A) ,(C) ,(B) ,(D) 

  1. 求函数 e 2 x ( x + y 2 + 2 y ) e^{2x}(x+y^2+2y) e2x(x+y2+2y) 的极值点.

方向导数、梯度
  1. 设函数 u ( x , y , z ) = 1 + x 2 6 + y 2 12 + z 2 18 u(x,y,z)=1+\cfrac{x^2}{6}+\cfrac{y^2}{12}+\cfrac{z^2}{18} u(x,y,z)=1+6x2+12y2+18z2, 单位向量 n ⃗ = 1 3 ( 1 , 1 , 1 ) \vec n=\cfrac{1}{\sqrt3}(1,1,1) n =3 1(1,1,1), 则 ∂ u ∂ n ⃗ ∣ ( 1 , 2 , 3 ) = ‾ . \cfrac{\partial u}{\partial \vec n} | _{(1,2,3)}=\underline{\qquad}. n u(1,2,3)=.

  2. u = x 2 a 2 + y 2 b 2 + z 2 c 2 u=\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2} u=a2x2+b2y2+c2z2 , 其中 a > b > c > 0. a>b>c>0. a>b>c>0. 求在点 ( 0 , 0 , 0 ) (0,0,0) (0,0,0) 处函数增长最快的方向的单位向量.

  3. 求函数 u = x x 2 + y 2 + z 2 u=\cfrac x{\sqrt{x^2+y^2+z^2}} u=x2+y2+z2 x 在点 M ( 1 , 2 , − 2 ) M(1,2,-2) M(1,2,2) 处沿曲线 { x = t , y = 2 t 2 , z = − 2 t 4 \begin{cases}x=t,\\y=2t^2,\\z=-2t^4\end{cases} x=t,y=2t2,z=2t4 在该点切线方向的方向导数.


立体几何中的应用
  1. 曲面 3 x 2 + y 2 + z 2 = 12 3x^2+y^2+z^2=12 3x2+y2+z2=12 上点 M ( − 1 , 0 , 3 ) M(-1,0,3) M(1,0,3) 处的切平面与平面 z = 0 z=0 z=0 的夹角是 ( )

( A )   π 2 ( B )   π 3 ( C )   π 4 ( D )   π 6 \begin{aligned} ({\rm A})\ \frac\pi2 &&({\rm B})\ \frac\pi3 &&({\rm C})\ \frac\pi4 &&({\rm D})\ \frac\pi6\\ \end{aligned} (A) 2π(B) 3π(C) 4π(D) 6π

  1. 曲线 { x = t , y = t 2 z = t 3 \begin{cases}x=t,\\y=t^2\\z=t^3\end{cases} x=t,y=t2z=t3 , 上的 M M M 处的切线平行于平面 x + 2 y + z = 4 x+2y+z=4 x+2y+z=4, 则 M M M 的坐标可以是 ( )

( A )   ( 1 , 1 , 1 ) ( B )   ( − 1 3 , 1 9 , − 1 27 ) ( C )   ( 1 3 , 1 9 , 1 27 ) ( D )   ( − 3 , 9 , − 27 ) \begin{aligned} &({\rm A})\ (1,1,1) &&({\rm B})\ (-\frac13,\frac19,-\frac1{27})\\ &({\rm C})\ (\frac13,\frac19,\frac1{27}) &&({\rm D})\ (-3,9,-27)\\ \end{aligned} (A) (1,1,1)(C) (31,91,271)(B) (31,91,271)(D) (3,9,27)

  1. 曲面 z = x 2 2 + y 2 z=\cfrac{x^2}2+y^2 z=2x2+y2 平行于平面 2 x + 2 y − z = 0 2x+2y-z=0 2x+2yz=0 的切平面方面为 ‾ . \underline{\qquad}. .

  2. 球面 x 2 + y 2 + z 2 = 6 x^2+y^2+z^2=6 x2+y2+z2=6 与抛物面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 的交线在点 ( 1 , 1 , 2 ) (1,1,2) (1,1,2) 处的切线方程为 ‾ \underline{\qquad} .


隐函数存在定理与应用
  1. 隐函数定理中的四个条件是隐函数存在的 ( )

( A )   充 要 条 件 ( B )   充 分 不 必 要 条 件 ( C )   必 要 不 充 分 条 件 ( D )   既 不 充 分 也 不 必 要 条 件 \begin{aligned} &({\rm A})\ 充要条件 &&({\rm B})\ 充分不必要条件\\ &({\rm C})\ 必要不充分条件 &&({\rm D})\ 既不充分也不必要条件\\ \end{aligned} (A) (C) (B) (D) 

  1. x = x ( y , z ) , y = y ( z , x ) , z = z ( x , y ) x=x(y,z),y=y(z,x),z=z(x,y) x=x(y,z),y=y(z,x),z=z(x,y) 是由方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 所确定的隐函数, 则 ∂ x ∂ y ⋅ ∂ y ∂ z ⋅ ∂ z ∂ x \cfrac{\partial x}{\partial y}\cdot\cfrac{\partial y}{\partial z}\cdot\cfrac{\partial z}{\partial x} yxzyxz 等于 ( )

( A )   − 1 ( B )   1 ( C )   − 1 2 ( D )   1 2 ({\rm A})\ -1 \qquad ({\rm B})\ 1\qquad({\rm C})\ -\frac12\qquad({\rm D})\ \frac12 \\ (A) 1(B) 1(C) 21(D) 21

  1. 设函数 φ ( u , v ) \varphi (u,v) φ(u,v) 具有一阶连续偏导数, 则方程 φ ( c x − a z , c y − b z ) = 0 \varphi(cx-az,cy-bz)=0 φ(cxaz,cybz)=0 所确定的函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 满足 a ∂ z ∂ x + b ∂ z ∂ y a\cfrac {\partial z}{\partial x}+b\cfrac{\partial z}{\partial y} axz+byz 等于 ( )

( A )   a c ( B )   b c ( C )   c D )   a + b ({\rm A})\ ac \qquad ({\rm B})\ bc\qquad({\rm C})\ c\qquad{\rm D})\ a+b \\ (A) ac(B) bc(C) cD) a+b

  1. z = z ( x , y ) z=z(x,y) z=z(x,y) 是由方程 x + y + z = e z x+y+z=e^z x+y+z=ez 所确定的隐函数, 则 z x y = ‾ z_{xy}=\underline{\qquad} zxy=.

  2. z ( x , y ) z(x,y) z(x,y) 由方程 F ( x + z y , y + z x ) = 0 F(x+\cfrac zy,y+\cfrac zx)=0 F(x+yz,y+xz)=0 所确定, 且 F ( u , v ) F(u,v) F(u,v) 且具有连续偏导数,则 x ∂ z ∂ x + y ∂ z ∂ y = ‾ x\cfrac {\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=\underline{\qquad} xxz+yyz=.

  3. x = cos ⁡ φ cos ⁡ ψ , y = cos ⁡ φ sin ⁡ ψ , z = sin ⁡ φ x=\cos\varphi\cos\psi,y=\cos\varphi\sin\psi,z=\sin\varphi x=cosφcosψ,y=cosφsinψ,z=sinφ, 求 ∂ 2 z ∂ x 2 \cfrac{\partial^2z}{\partial x^2} x22z.

  4. u ( x , y ) u(x,y) u(x,y) 是由方程组 { u = f ( x , y , z , t ) , g ( y , z , t ) = 0 , h ( z , t ) = 0 \begin{cases}u=f(x,y,z,t),\\g(y,z,t)=0,\\h(z,t)=0\end{cases} u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0 确定的函数, 其中 f , g , h f,g,h f,g,h 均连续可微, 且 ∂ ( g , h ) ∂ ( z , t ) ≠ 0 \cfrac{\partial(g,h)}{\partial(z,t)}\neq0 (z,t)(g,h)=0, 求 ∂ u ∂ y \cfrac{\partial u}{\partial y} yu.


拉格朗日乘数法
  1. 平面 x + y + z = 1 x+y+z=1 x+y+z=1 上的点 P 0 P_0 P0 与两定点 P ( 1 , 0 , 1 ) , Q ( 2 , 0 , 1 ) P(1,0,1),Q(2,0,1) P(1,0,1),Q(2,0,1) 的距离平方和为最小, 则点 P 0 P_0 P0 的坐标为 ‾ \underline{\qquad} .

  2. 求二元函数 z = f ( x , y ) = x 2 y ( 4 − x − y ) z=f(x,y)=x^2y(4-x-y) z=f(x,y)=x2y(4xy) 在直线 x + y = 6 x+y=6 x+y=6 x x x y y y 轴所围成的闭区域 D上的最大值与最小值.

  3. 求函数 z = 2 x 2 + y 2 − 8 x − 2 y + 9 z=2x^2+y^2-8x-2y+9 z=2x2+y28x2y+9 D : 2 x 2 + y 2 ≤ 1 D:2x^2+y^2\le 1 D:2x2+y21 上的最值.


拉格朗日乘数法
  1. 平面 x + y + z = 1 x+y+z=1 x+y+z=1 上的点 P 0 P_0 P0 与两定点 P ( 1 , 0 , 1 ) , Q ( 2 , 0 , 1 ) P(1,0,1),Q(2,0,1) P(1,0,1),Q(2,0,1) 的距离平方和为最小, 则点 P 0 P_0 P0 的坐标为 ‾ \underline{\qquad} .

  2. 求二元函数 z = f ( x , y ) = x 2 y ( 4 − x − y ) z=f(x,y)=x^2y(4-x-y) z=f(x,y)=x2y(4xy) 在直线 x + y = 6 x+y=6 x+y=6 x x x y y y 轴所围成的闭区域 D上的最大值与最小值.

  3. 求函数 z = 2 x 2 + y 2 − 8 x − 2 y + 9 z=2x^2+y^2-8x-2y+9 z=2x2+y28x2y+9 D : 2 x 2 + y 2 ≤ 1 D:2x^2+y^2\le 1 D:2x2+y21 上的最值.

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vaster4

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值