为了考数竞,所以临门抱佛脚,快速做了裴礼文的例题,并且跳过了一部分内容,花了一个月左右的时间,但是做的不精,仅仅是为了快速复习一遍,然后再多做一些数竞真题,可惜的是最后差了一个名额就进决赛!悲~~。
我贴一下记录的一些笔记吧,也算是努力的证明,记录的内容可能比较杂乱且不严谨,本人水平不高,仅仅是个人愚见,还请见谅,如有问题请斧正。
选择CSDN是因为直接复制md文本到编辑器里,知乎、少数派这些平台多多少少有些问题,只有CSDN的格式是没有乱的,只能说不愧是程序员社区(竖大拇指)
数学归纳法
第一数学归纳法
先证 n = 1 n=1 n=1 成立,再证若 n = k n=k n=k 成立,推得 n = k + 1 n=k+1 n=k+1 成立
第二数学归纳法(完整归纳法)
先证 n = 1 n=1 n=1 成立,再证若 n ≤ k n\leq k n≤k 成立,推得 n = k + 1 n=k+1 n=k+1 成立
反向归纳法
先证对 ∀ n = 2 k \forall n=2^{k} ∀n=2k 成立,再证若 n = k + 1 n=k+1 n=k+1 成立,推得 n = k n=k n=k 成立
2 k 2^k 2k 可替换为 k k k 的无穷序列
极限
证明极限的存在性
- ε − N \varepsilon-N ε−N 定义及其否定
- Cauchy 准则
- 单调有界定理
- 海涅定理
求极限的方法
- 等价代换
- Taylor 公式
- Stirling 公式
- 调和级数:对数 + 欧拉常数
- 常用变形
- 指对变换
- 分子有理化
- 连续性将极限拿进去
- 两边夹法则(放缩)
- L’Hospital 法则、Stolz 公式
- 凑积分定义
- 收敛级数
- 收敛级数通项趋于 0
- 收敛级数余项趋于 0
- 作差构建级数 x n = ∑ i = 2 ∞ ( x i − x i − 1 ) + x 1 x_{n}=\sum_{i=2}^{\infty}(x_{i}-x_{i-1})+x_{1} xn=∑i=2∞(xi−xi−1)+x1,判断 ∑ i = 2 ∞ ∣ x i − x i − 1 ∣ \sum_{i=2}^{\infty}|x_{i}-x_{i-1}| ∑i=2∞∣xi−xi−1∣ 的收敛性,加之 M 判别法
- 罕见: e t e^{ t } et 乘积先求导再积分构造
Stirling 公式
n ! = 2 π n ( n e ) n e θ n 12 n , 0 ≤ θ n ≤ 1 n! = \sqrt{ 2\pi n } (\frac{n}{e})^{n}e^{ \frac{\theta_{n}}{12n} },\quad 0\leq\theta_{n}\leq 1 n!=2πn(en)ne12nθn,0≤θn≤1
Wallis 公式
I n = ∫ 0 π 2 sin n x d x = ∫ 0 π 2 cos n x d x = { ( n − 1 ) ! ! n ! ! π 2 n 为偶数 ( n − 1 ) ! ! n ! ! n 为奇数 \begin{aligned} I_{n} & = \int_{0}^{\frac{\pi}{2}}\sin^nx\mathrm{d}x = \int_{0}^{\frac{\pi}{2}}\cos^nx\mathrm{d}x = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2} & n \text{为偶数} \\ \frac{(n-1)!!}{n!!} & n \text{为奇数} \\ \end{cases} \end{aligned} In=∫02πsinnxdx=∫02πcosnxdx={n!!(n−1)!!2πn!!(n−1)!!n为偶数n为奇数
I m , n = ∫ 0 π 2 sin m x cos n x d x = { ( m − 1 ) ! ! ( n − 1 ) ! ! ( m + n ) ! ! π 2 m , n 均为偶数 ( m − 1 ) ! ! ( n − 1 ) ! ! ( m + n ) ! ! 其他 I_{m,n} = \int_{0}^{\frac{\pi}{2}} \sin^mx \cos^nx\mathrm{d}x = \begin{cases} \frac{(m-1)!!(n-1)!!}{(m+n)!!} \frac{\pi}{2} & m,n \text{均为偶数} \\ \frac{(m-1)!!(n-1)!!}{(m+n)!!} & \text{其他} \\ \end{cases} Im,n=∫02πsinmxcosnxdx={(m+n)!!(m−1)!!(n−1)!!2π(m+n)!!(m−1)!!(n−1)!!m,n均为偶数其他
调和级数(欧拉级数)
∑
k
=
1
n
1
k
=
ln
n
+
C
+
ε
n
,
lim
n
→
∞
ε
n
=
0
\sum_{k=1}^{n} \frac{1}{k} = \ln n + C + \varepsilon_{n}, \quad\lim_{ n \to \infty } \varepsilon_{n}=0
k=1∑nk1=lnn+C+εn,n→∞limεn=0
其中
C
C
C 为欧拉常数。
两边夹法则
- 方法一
- 放大:每个都放到最大
- 放小:只要最大的一个
- 这样可以都向同一个方向放缩
- 方法二
- 平均值放缩
- 调和,几何,算数,平方
- 方法三
- 反用拉格朗日公式,对 ξ \xi ξ 放缩
常用 Taylor 公式
e x = ∑ n = 0 ∞ x n n ! = 1 + x 1 ! + x 2 2 ! + ⋯ cos x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − x 2 2 ! + x 4 4 ! + ⋯ sin x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + x 5 5 ! + ⋯ ln ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n x n + 1 n + 1 = x − x 2 2 + x 3 3 + ⋯ ( 1 + x ) α = ∑ n = 0 ∞ C α n x n = 1 + α 1 ! x + α ( x + 1 ) 2 ! x 2 + ⋯ \begin{aligned} & e^{x}=\sum_{n=0}^{\infty}\frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots\\ \\ & \cos x=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\\ \\ & \sin x=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\\ \\ & \ln(1+x)=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\\ \\ & (1+x)^{\alpha}=\sum_{n=0}^{\infty}C_{\alpha}^{n}x^{n}=1+\frac{\alpha}{1!}x+\frac{\alpha(x+1)}{2!}x^{2}+\cdots\\ \end{aligned} ex=n=0∑∞n!xn=1+1!x+2!x2+⋯cosx=n=0∑∞(2n)!(−1)nx2n=1−2!x2+4!x4+⋯sinx=n=0∑∞(2n+1)!(−1)nx2n+1=x−3!x3+5!x5+⋯ln(1+x)=n=0∑∞(−1)nn+1xn+1=x−2x2+3x3+⋯(1+x)α=n=0∑∞Cαnxn=1+1!αx+2!α(x+1)x2+⋯
无穷阶次比较
令
0
<
θ
<
1
,
k
∈
N
,
a
>
1
0<\theta<1,k\in \mathbb{N},a>1
0<θ<1,k∈N,a>1,当
n
→
∞
n\to \infty
n→∞ 时
ln
ln
n
≪
ln
n
≪
n
θ
≤
n
k
≪
a
n
≪
n
!
≪
n
n
\ln \ln n\ll \ln n\ll n^{\theta}\leq n^{k}\ll a^{n}\ll n!\ll n^{n}
lnlnn≪lnn≪nθ≤nk≪an≪n!≪nn
实数基本定理
- 确界原理
- 单调有界原理
- Cauchy 准则
- 致密性定理
- 聚点定理
- 区间套定理
- 有限开覆盖定理
- Dedekind 分割定理
连续性
连续性的证明
- 利用定义
- 左、右极限与值相等
- 反证法使用序列语言
- 邻域语言
连续性
⟹
\implies
⟹ 介值性
介值性 + 单射
⟹
\implies
⟹ 严格单调且连续
一个间断点的例子
f
(
x
)
=
x
2
sin
(
1
x
)
f
′
(
x
)
=
2
x
sin
(
1
x
)
−
cos
(
1
x
)
\begin{aligned} & f(x) = x^{2} \sin\left( \frac{1}{x} \right) \\ \\ & f'(x) = 2x\sin\left( \frac{1}{x} \right) - \cos\left( \frac{1}{x} \right) \end{aligned}
f(x)=x2sin(x1)f′(x)=2xsin(x1)−cos(x1)
f ( x ) f(x) f(x) 在 0 处是可去间断点, f ′ ( x ) f'(x) f′(x) 在 0 处是第二类间断点(在 0 处左右两侧均没有单侧极限)
一致连续性的证明:
- 导函数 f ′ f' f′ 有界 ⟹ \implies ⟹Lipschitz 条件 ⟹ \implies ⟹ 一致连续性
- 反证法 + 定义的否定形式构造序列
Cantor 定理:
闭区间上的连续函数必定一致连续
一元微分学
导数的证明与计算:
- 导数定义、定义展开式
- 在一点处导数存在等价于左右导数存在且相等
- 导数极限定理
- 导数处处存在意义下,导数无第一类间断点
高阶导数
- Leibniz 公式
- 数学归纳法
- 构造递推方程
- Taylor 展开式
Leibniz 公式:
(
u
v
)
(
n
)
=
∑
k
=
0
n
(
n
k
)
u
(
k
)
v
(
n
−
k
)
(uv)^{(n)}=\sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}
(uv)(n)=k=0∑n(kn)u(k)v(n−k)
一些高阶导数
(
sin
x
)
(
n
)
=
sin
(
x
+
n
π
2
)
(
cos
x
)
(
n
)
=
cos
(
x
+
n
π
2
)
\begin{aligned} (\sin x)^{(n)} = \sin\left( x+\frac{n\pi}{2} \right) \\ (\cos x)^{(n)} = \cos\left( x+\frac{n\pi}{2} \right) \end{aligned}
(sinx)(n)=sin(x+2nπ)(cosx)(n)=cos(x+2nπ)
特殊小技巧:
例 3.1.7:根据导数定义,构造
∑
k
=
1
n
(
x
2
k
−
1
−
x
2
k
)
\sum_{k=1}^{n}(\frac{x}{2^{k-1}}-\frac{x}{2^{k}})
∑k=1n(2k−1x−2kx) 两两相消
微分中值定理及相关证明:
- Rolle 中值定理
- Lagrange 中值定理
- Cauchy 中值定理
- 构造辅助函数
- 联系了原函数与导函数的关系
- Fermat 定理
- 若是关于 f ( x ) f(x) f(x) 的证明,可由 f ( x ± h ) 或 f ( b ) f(x\pm h)或f(b) f(x±h)或f(b) 在 f ( x ) f(x) f(x) 处 Taylor 展开
Rolle 定理推其他两个定理,可以通过构造行列式形式的辅助函数
F
(
x
)
F(x)
F(x) 来证明证明
F
(
x
)
=
∣
f
(
a
)
g
(
a
)
h
(
a
)
f
(
b
)
g
(
b
)
h
(
b
)
f
(
x
)
g
(
x
)
h
(
x
)
∣
F(x)=\left|\begin{matrix} f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \\ f(x) & g(x) & h(x) \end{matrix}\right|
F(x)=
f(a)f(b)f(x)g(a)g(b)g(x)h(a)h(b)h(x)
不等式证明:
- 单调性放缩
- 微分中值定理
- 数列:利用微分中值定理构造差分相消结构
- Taylor 公式
- 求极值
- 单调极限
- 凹凸性
凸函数
- 任意內闭子区间有界
- 任意内闭子区间满足 Lipschitz 条件
一元积分学
积分的计算及证明
- 拆分区间(一段函数有界、区间长度区域 0,一段区间长度有限、函数一致趋于 0)
- 平移伸缩区间至 [ 0 , 1 ] [0,1] [0,1],方便计算
- 注意区分各量的独立性,看时机赋值
黎曼可积
- 黎曼积分定义
- 振幅和任意小
- 异常振幅的区间长度任意小
可积性性质及一些证明方法
- 闭区间上可积函数的连续点处处稠密
反常积分收敛性
定号
M 比较判别法
变上限积分有界变号但单调
Dirichlet:g 单调趋于 0 且 f 变上限积分有界
Abel:g 单调有界且 f 无穷级数收敛(f 变上限积分极限存在)基本方法
定义、Cauchy、运算性质
分部积分或变量代换转为别的式子
有理函数求积分(待)
级数
一致连续性
- 定义
- Cauchy 准则
- 余项 放大法
- 确界法
- 反证 + 序列
( 1 − x ) − 1 2 = ∑ i = 1 ∞ ( 2 n − 1 ) ! ! ( 2 n ) ! ! x n , ∣ x ∣ < 1 (1-x)^{-\frac{1}{2}} = \sum_{i=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^n , \quad |x|<1 (1−x)−21=i=1∑∞(2n)!!(2n−1)!!xn,∣x∣<1
一致收敛(待)
不等式专题
乘积到乘积:Cauchy 不等式 -> Holder 不等式
加法到加法:三角不等式 -> Minkowski 不等式
乘积到加法:均值不等式 -> Young 不等式Cauchy 不等式
∣ ∣ ( x , y ) ∣ ∣ ≤ ∣ ∣ x ∣ ∣ ∣ ∣ y ∣ ∣ ||(x,y)|| \le ||x|| ||y|| ∣∣(x,y)∣∣≤∣∣x∣∣∣∣y∣∣
Holder 不等式
∣ ∣ f g ∣ ∣ 1 ≤ ∣ ∣ f ∣ ∣ p ∣ ∣ g ∣ ∣ q ||fg||_{1} \le ||f||_{p} ||g||_{q} ∣∣fg∣∣1≤∣∣f∣∣p∣∣g∣∣q
Minkowski 不等式
∣ ∣ f + g ∣ ∣ p ≤ ∣ ∣ f ∣ ∣ p + ∣ ∣ g ∣ ∣ p ||f+g||_{p} \le ||f||_{p} + ||g||_{p} ∣∣f+g∣∣p≤∣∣f∣∣p+∣∣g∣∣p
Young 不等式
a
b
≤
1
p
a
p
+
1
q
b
q
ab \le \frac{1}{p} a^{p} + \frac{1}{q} b^{q}
ab≤p1ap+q1bq
Young 不等式(推广)
a
b
≤
∫
0
a
f
(
x
)
d
x
+
∫
0
b
f
−
1
(
y
)
d
y
ab \le \int_{0}^{a} f(x)dx + \int_{0}^{b} f^{-1}(y)dy
ab≤∫0af(x)dx+∫0bf−1(y)dy
其中,
f
:
R
→
R
f:\mathbb{R}\to \mathbb{R}
f:R→R 连续其严格单调递增,
f
(
0
)
=
0
f(0)=0
f(0)=0.
Cauchy 不等式(连续)
(
∫
a
b
f
(
x
)
g
(
x
)
d
x
)
2
≤
(
∫
a
b
f
(
x
)
2
)
1
2
(
∫
a
b
g
(
x
)
2
)
1
2
\Big(\int_{a}^{b} f(x)g(x)\mathrm{d}x \Big)^{2} \le \Big( \int_{a}^{b}f(x)^2 \Big)^{ \frac{1}{2} } \Big( \int_{a}^{b}g(x)^2 \Big)^{ \frac{1}{2} }
(∫abf(x)g(x)dx)2≤(∫abf(x)2)21(∫abg(x)2)21
Holder 不等式(连续)
∫
Ω
f
(
x
)
g
(
x
)
d
x
≤
(
∫
Ω
∣
f
(
x
)
∣
p
d
x
)
1
p
(
∫
Ω
∣
g
(
x
)
∣
q
d
x
)
1
q
\int_{\Omega} f(x)g(x)\mathrm{d}x \le \left( \int_{\Omega} |f(x)|^p \mathrm{d}x \right)^{ \frac{1}{p} } \left( \int_{\Omega} |g(x)|^q \mathrm{d}x \right)^{ \frac{1}{q} }
∫Ωf(x)g(x)dx≤(∫Ω∣f(x)∣pdx)p1(∫Ω∣g(x)∣qdx)q1
其中
p
>
1
,
1
p
+
1
q
=
1
p>1,\frac{1}{p}+\frac{1}{q}=1
p>1,p1+q1=1
Minkowski 不等式(连续)
(
∫
Ω
(
f
(
x
)
+
g
(
x
)
)
p
d
x
)
1
p
≤
(
∫
Ω
f
p
(
x
)
d
x
)
1
p
+
(
∫
Ω
g
p
(
x
)
d
x
)
1
p
\Big( \int_{\Omega} ( f(x)+g(x) )^p \mathrm{d}x \Big)^{\frac{1}{p}} \le \Big( \int_{\Omega} f^p(x) \mathrm{d}x \Big)^{\frac{1}{p}} + \Big( \int_{\Omega} g^p(x) \mathrm{d}x \Big)^{\frac{1}{p}}
(∫Ω(f(x)+g(x))pdx)p1≤(∫Ωfp(x)dx)p1+(∫Ωgp(x)dx)p1
Holder 不等式(离散)
∑
i
=
1
n
a
i
b
i
≤
(
∑
i
=
1
n
a
i
p
)
1
p
(
∑
i
=
1
n
b
i
q
)
1
q
\sum_{i=1}^n a_{i}b_{i} \le \left( \sum_{i=1}^n a_{i}^p \right)^{\frac{1}{p}} \left( \sum_{i=1}^n b_{i}^q \right)^{\frac{1}{q}}
i=1∑naibi≤(i=1∑naip)p1(i=1∑nbiq)q1
其中
p
>
1
,
1
p
+
1
q
=
1
p>1,\frac{1}{p}+\frac{1}{q}=1
p>1,p1+q1=1
多元函数
多元函数求极限
- 两边夹法则
- 变量替换,转为一元函数
- 极坐标
- 初等变形
- 若能事先看出极限,可用 ε − N \varepsilon-N ε−N 方法证明
Stokes 公式
∫ d Ω ω = ∫ Ω d ω \int_{d\Omega} \omega = \int_{\Omega} d\omega ∫dΩω=∫Ωdω
Green 公式
∫ ∂ Ω P d x + Q d y = ∫ Ω ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \int_{\partial\Omega} Pdx+Qdy = \int_{\Omega} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy ∫∂ΩPdx+Qdy=∫Ω(∂x∂Q−∂y∂P)dxdy
随时补充
凸函数在开区间上连续.
相容线性方程组指的是方程有解,即有唯一解或无穷多解,不相容即指无解.