数学分析 裴礼文总结

为了考数竞,所以临门抱佛脚,快速做了裴礼文的例题,并且跳过了一部分内容,花了一个月左右的时间,但是做的不精,仅仅是为了快速复习一遍,然后再多做一些数竞真题,可惜的是最后差了一个名额就进决赛!悲~~。

我贴一下记录的一些笔记吧,也算是努力的证明,记录的内容可能比较杂乱且不严谨,本人水平不高,仅仅是个人愚见,还请见谅,如有问题请斧正。

选择CSDN是因为直接复制md文本到编辑器里,知乎、少数派这些平台多多少少有些问题,只有CSDN的格式是没有乱的,只能说不愧是程序员社区(竖大拇指)

数学归纳法

第一数学归纳法

先证 n = 1 n=1 n=1 成立,再证若 n = k n=k n=k 成立,推得 n = k + 1 n=k+1 n=k+1 成立

第二数学归纳法(完整归纳法)

先证 n = 1 n=1 n=1 成立,再证若 n ≤ k n\leq k nk 成立,推得 n = k + 1 n=k+1 n=k+1 成立

反向归纳法

先证对 ∀ n = 2 k \forall n=2^{k} n=2k 成立,再证若 n = k + 1 n=k+1 n=k+1 成立,推得 n = k n=k n=k 成立

2 k 2^k 2k 可替换为 k k k 的无穷序列

极限

证明极限的存在性

  • ε − N \varepsilon-N εN 定义及其否定
  • Cauchy 准则
  • 单调有界定理
  • 海涅定理

求极限的方法

  • 等价代换
    • Taylor 公式
    • Stirling 公式
    • 调和级数:对数 + 欧拉常数
  • 常用变形
    • 指对变换
    • 分子有理化
    • 连续性将极限拿进去
  • 两边夹法则(放缩)
  • L’Hospital 法则、Stolz 公式
  • 凑积分定义
  • 收敛级数
    • 收敛级数通项趋于 0
    • 收敛级数余项趋于 0
    • 作差构建级数 x n = ∑ i = 2 ∞ ( x i − x i − 1 ) + x 1 x_{n}=\sum_{i=2}^{\infty}(x_{i}-x_{i-1})+x_{1} xn=i=2(xixi1)+x1,判断 ∑ i = 2 ∞ ∣ x i − x i − 1 ∣ \sum_{i=2}^{\infty}|x_{i}-x_{i-1}| i=2xixi1 的收敛性,加之 M 判别法
  • 罕见: e t e^{ t } et 乘积先求导再积分构造

Stirling 公式

n ! = 2 π n ( n e ) n e θ n 12 n , 0 ≤ θ n ≤ 1 n! = \sqrt{ 2\pi n } (\frac{n}{e})^{n}e^{ \frac{\theta_{n}}{12n} },\quad 0\leq\theta_{n}\leq 1 n!=2πn (en)ne12nθn,0θn1

Wallis 公式

I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { ( n − 1 ) ! ! n ! ! π 2 n 为偶数 ( n − 1 ) ! ! n ! ! n 为奇数 \begin{aligned} I_{n} & = \int_{0}^{\frac{\pi}{2}}\sin^nx\mathrm{d}x = \int_{0}^{\frac{\pi}{2}}\cos^nx\mathrm{d}x = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2} & n \text{为偶数} \\ \frac{(n-1)!!}{n!!} & n \text{为奇数} \\ \end{cases} \end{aligned} In=02πsinnxdx=02πcosnxdx={n!!(n1)!!2πn!!(n1)!!n为偶数n为奇数

I m , n = ∫ 0 π 2 sin ⁡ m x cos ⁡ n x d x = { ( m − 1 ) ! ! ( n − 1 ) ! ! ( m + n ) ! ! π 2 m , n 均为偶数 ( m − 1 ) ! ! ( n − 1 ) ! ! ( m + n ) ! ! 其他 I_{m,n} = \int_{0}^{\frac{\pi}{2}} \sin^mx \cos^nx\mathrm{d}x = \begin{cases} \frac{(m-1)!!(n-1)!!}{(m+n)!!} \frac{\pi}{2} & m,n \text{均为偶数} \\ \frac{(m-1)!!(n-1)!!}{(m+n)!!} & \text{其他} \\ \end{cases} Im,n=02πsinmxcosnxdx={(m+n)!!(m1)!!(n1)!!2π(m+n)!!(m1)!!(n1)!!m,n均为偶数其他

调和级数(欧拉级数)

∑ k = 1 n 1 k = ln ⁡ n + C + ε n , lim ⁡ n → ∞ ε n = 0 \sum_{k=1}^{n} \frac{1}{k} = \ln n + C + \varepsilon_{n}, \quad\lim_{ n \to \infty } \varepsilon_{n}=0 k=1nk1=lnn+C+εn,nlimεn=0
其中 C C C 为欧拉常数。

两边夹法则

  • 方法一
    • 放大:每个都放到最大
    • 放小:只要最大的一个
    • 这样可以都向同一个方向放缩
  • 方法二
    • 平均值放缩
    • 调和,几何,算数,平方
  • 方法三
    • 反用拉格朗日公式,对 ξ \xi ξ 放缩

常用 Taylor 公式

e x = ∑ n = 0 ∞ x n n ! = 1 + x 1 ! + x 2 2 ! + ⋯ cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − x 2 2 ! + x 4 4 ! + ⋯ sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − x 3 3 ! + x 5 5 ! + ⋯ ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n x n + 1 n + 1 = x − x 2 2 + x 3 3 + ⋯ ( 1 + x ) α = ∑ n = 0 ∞ C α n x n = 1 + α 1 ! x + α ( x + 1 ) 2 ! x 2 + ⋯ \begin{aligned} & e^{x}=\sum_{n=0}^{\infty}\frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots\\ \\ & \cos x=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\\ \\ & \sin x=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\\ \\ & \ln(1+x)=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\\ \\ & (1+x)^{\alpha}=\sum_{n=0}^{\infty}C_{\alpha}^{n}x^{n}=1+\frac{\alpha}{1!}x+\frac{\alpha(x+1)}{2!}x^{2}+\cdots\\ \end{aligned} ex=n=0n!xn=1+1!x+2!x2+cosx=n=0(2n)!(1)nx2n=12!x2+4!x4+sinx=n=0(2n+1)!(1)nx2n+1=x3!x3+5!x5+ln(1+x)=n=0(1)nn+1xn+1=x2x2+3x3+(1+x)α=n=0Cαnxn=1+1!αx+2!α(x+1)x2+

无穷阶次比较
0 < θ < 1 , k ∈ N , a > 1 0<\theta<1,k\in \mathbb{N},a>1 0<θ<1,kN,a>1,当 n → ∞ n\to \infty n
ln ⁡ ln ⁡ n ≪ ln ⁡ n ≪ n θ ≤ n k ≪ a n ≪ n ! ≪ n n \ln \ln n\ll \ln n\ll n^{\theta}\leq n^{k}\ll a^{n}\ll n!\ll n^{n} lnlnnlnnnθnkann!nn

实数基本定理

  1. 确界原理
  2. 单调有界原理
  3. Cauchy 准则
  4. 致密性定理
  5. 聚点定理
  6. 区间套定理
  7. 有限开覆盖定理
  8. Dedekind 分割定理

连续性

连续性的证明

  • 利用定义
  • 左、右极限与值相等
  • 反证法使用序列语言
  • 邻域语言

连续性    ⟹    \implies 介值性
介值性 + 单射    ⟹    \implies 严格单调且连续

一个间断点的例子
f ( x ) = x 2 sin ⁡ ( 1 x ) f ′ ( x ) = 2 x sin ⁡ ( 1 x ) − cos ⁡ ( 1 x ) \begin{aligned} & f(x) = x^{2} \sin\left( \frac{1}{x} \right) \\ \\ & f'(x) = 2x\sin\left( \frac{1}{x} \right) - \cos\left( \frac{1}{x} \right) \end{aligned} f(x)=x2sin(x1)f(x)=2xsin(x1)cos(x1)

f ( x ) f(x) f(x) 在 0 处是可去间断点, f ′ ( x ) f'(x) f(x) 在 0 处是第二类间断点(在 0 处左右两侧均没有单侧极限)

一致连续性的证明:

  • 导函数 f ′ f' f 有界    ⟹    \implies Lipschitz 条件    ⟹    \implies 一致连续性
  • 反证法 + 定义的否定形式构造序列

Cantor 定理:
闭区间上的连续函数必定一致连续

一元微分学

导数的证明与计算:

  • 导数定义、定义展开式
  • 在一点处导数存在等价于左右导数存在且相等
  • 导数极限定理
  • 导数处处存在意义下,导数无第一类间断点

高阶导数

  • Leibniz 公式
  • 数学归纳法
  • 构造递推方程
  • Taylor 展开式

Leibniz 公式:
( u v ) ( n ) = ∑ k = 0 n ( n k ) u ( k ) v ( n − k ) (uv)^{(n)}=\sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)} (uv)(n)=k=0n(kn)u(k)v(nk)

一些高阶导数
( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) \begin{aligned} (\sin x)^{(n)} = \sin\left( x+\frac{n\pi}{2} \right) \\ (\cos x)^{(n)} = \cos\left( x+\frac{n\pi}{2} \right) \end{aligned} (sinx)(n)=sin(x+2)(cosx)(n)=cos(x+2)

特殊小技巧:
例 3.1.7:根据导数定义,构造 ∑ k = 1 n ( x 2 k − 1 − x 2 k ) \sum_{k=1}^{n}(\frac{x}{2^{k-1}}-\frac{x}{2^{k}}) k=1n(2k1x2kx) 两两相消

微分中值定理及相关证明:

  • Rolle 中值定理
  • Lagrange 中值定理
  • Cauchy 中值定理
  • 构造辅助函数
  • 联系了原函数与导函数的关系
  • Fermat 定理
  • 若是关于 f ( x ) f(x) f(x) 的证明,可由 f ( x ± h ) 或 f ( b ) f(x\pm h)或f(b) f(x±h)f(b) f ( x ) f(x) f(x) 处 Taylor 展开

Rolle 定理推其他两个定理,可以通过构造行列式形式的辅助函数 F ( x ) F(x) F(x) 来证明证明
F ( x ) = ∣ f ( a ) g ( a ) h ( a ) f ( b ) g ( b ) h ( b ) f ( x ) g ( x ) h ( x ) ∣ F(x)=\left|\begin{matrix} f(a) & g(a) & h(a) \\ f(b) & g(b) & h(b) \\ f(x) & g(x) & h(x) \end{matrix}\right| F(x)= f(a)f(b)f(x)g(a)g(b)g(x)h(a)h(b)h(x)

不等式证明:

  • 单调性放缩
  • 微分中值定理
  • 数列:利用微分中值定理构造差分相消结构
  • Taylor 公式
  • 求极值
  • 单调极限
  • 凹凸性

凸函数

  • 任意內闭子区间有界
  • 任意内闭子区间满足 Lipschitz 条件

一元积分学

积分的计算及证明

  • 拆分区间(一段函数有界、区间长度区域 0,一段区间长度有限、函数一致趋于 0)
  • 平移伸缩区间至 [ 0 , 1 ] [0,1] [0,1],方便计算
  • 注意区分各量的独立性,看时机赋值

黎曼可积

  • 黎曼积分定义
  • 振幅和任意小
  • 异常振幅的区间长度任意小

可积性性质及一些证明方法

  • 闭区间上可积函数的连续点处处稠密

反常积分收敛性

定号

M 比较判别法
变上限积分有界

变号但单调

Dirichlet:g 单调趋于 0 且 f 变上限积分有界
Abel:g 单调有界且 f 无穷级数收敛(f 变上限积分极限存在)

基本方法

定义、Cauchy、运算性质
分部积分或变量代换转为别的式子

有理函数求积分(待)

级数

一致连续性

  • 定义
  • Cauchy 准则
  • 余项 放大法
  • 确界法
  • 反证 + 序列

( 1 − x ) − 1 2 = ∑ i = 1 ∞ ( 2 n − 1 ) ! ! ( 2 n ) ! ! x n , ∣ x ∣ < 1 (1-x)^{-\frac{1}{2}} = \sum_{i=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^n , \quad |x|<1 (1x)21=i=1(2n)!!(2n1)!!xn,x<1

一致收敛(待)

不等式专题

乘积到乘积:Cauchy 不等式 -> Holder 不等式
加法到加法:三角不等式 -> Minkowski 不等式
乘积到加法:均值不等式 -> Young 不等式

Cauchy 不等式
∣ ∣ ( x , y ) ∣ ∣ ≤ ∣ ∣ x ∣ ∣ ∣ ∣ y ∣ ∣ ||(x,y)|| \le ||x|| ||y|| ∣∣(x,y)∣∣∣∣x∣∣∣∣y∣∣

Holder 不等式
∣ ∣ f g ∣ ∣ 1 ≤ ∣ ∣ f ∣ ∣ p ∣ ∣ g ∣ ∣ q ||fg||_{1} \le ||f||_{p} ||g||_{q} ∣∣fg1∣∣fp∣∣gq

Minkowski 不等式
∣ ∣ f + g ∣ ∣ p ≤ ∣ ∣ f ∣ ∣ p + ∣ ∣ g ∣ ∣ p ||f+g||_{p} \le ||f||_{p} + ||g||_{p} ∣∣f+gp∣∣fp+∣∣gp

Young 不等式
a b ≤ 1 p a p + 1 q b q ab \le \frac{1}{p} a^{p} + \frac{1}{q} b^{q} abp1ap+q1bq
Young 不等式(推广)
a b ≤ ∫ 0 a f ( x ) d x + ∫ 0 b f − 1 ( y ) d y ab \le \int_{0}^{a} f(x)dx + \int_{0}^{b} f^{-1}(y)dy ab0af(x)dx+0bf1(y)dy
其中, f : R → R f:\mathbb{R}\to \mathbb{R} f:RR 连续其严格单调递增, f ( 0 ) = 0 f(0)=0 f(0)=0.

Cauchy 不等式(连续)
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ( ∫ a b f ( x ) 2 ) 1 2 ( ∫ a b g ( x ) 2 ) 1 2 \Big(\int_{a}^{b} f(x)g(x)\mathrm{d}x \Big)^{2} \le \Big( \int_{a}^{b}f(x)^2 \Big)^{ \frac{1}{2} } \Big( \int_{a}^{b}g(x)^2 \Big)^{ \frac{1}{2} } (abf(x)g(x)dx)2(abf(x)2)21(abg(x)2)21

Holder 不等式(连续)
∫ Ω f ( x ) g ( x ) d x ≤ ( ∫ Ω ∣ f ( x ) ∣ p d x ) 1 p ( ∫ Ω ∣ g ( x ) ∣ q d x ) 1 q \int_{\Omega} f(x)g(x)\mathrm{d}x \le \left( \int_{\Omega} |f(x)|^p \mathrm{d}x \right)^{ \frac{1}{p} } \left( \int_{\Omega} |g(x)|^q \mathrm{d}x \right)^{ \frac{1}{q} } Ωf(x)g(x)dx(Ωf(x)pdx)p1(Ωg(x)qdx)q1
其中 p > 1 , 1 p + 1 q = 1 p>1,\frac{1}{p}+\frac{1}{q}=1 p>1,p1+q1=1

Minkowski 不等式(连续)
( ∫ Ω ( f ( x ) + g ( x ) ) p d x ) 1 p ≤ ( ∫ Ω f p ( x ) d x ) 1 p + ( ∫ Ω g p ( x ) d x ) 1 p \Big( \int_{\Omega} ( f(x)+g(x) )^p \mathrm{d}x \Big)^{\frac{1}{p}} \le \Big( \int_{\Omega} f^p(x) \mathrm{d}x \Big)^{\frac{1}{p}} + \Big( \int_{\Omega} g^p(x) \mathrm{d}x \Big)^{\frac{1}{p}} (Ω(f(x)+g(x))pdx)p1(Ωfp(x)dx)p1+(Ωgp(x)dx)p1

Holder 不等式(离散)
∑ i = 1 n a i b i ≤ ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q \sum_{i=1}^n a_{i}b_{i} \le \left( \sum_{i=1}^n a_{i}^p \right)^{\frac{1}{p}} \left( \sum_{i=1}^n b_{i}^q \right)^{\frac{1}{q}} i=1naibi(i=1naip)p1(i=1nbiq)q1
其中 p > 1 , 1 p + 1 q = 1 p>1,\frac{1}{p}+\frac{1}{q}=1 p>1,p1+q1=1

多元函数

多元函数求极限

  • 两边夹法则
  • 变量替换,转为一元函数
  • 极坐标
  • 初等变形
  • 若能事先看出极限,可用 ε − N \varepsilon-N εN 方法证明

Stokes 公式

∫ d Ω ω = ∫ Ω d ω \int_{d\Omega} \omega = \int_{\Omega} d\omega dΩω=Ωdω

Green 公式

∫ ∂ Ω P d x + Q d y = ∫ Ω ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \int_{\partial\Omega} Pdx+Qdy = \int_{\Omega} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy ΩPdx+Qdy=Ω(xQyP)dxdy

随时补充

凸函数在开区间上连续.

相容线性方程组指的是方程有解,即有唯一解或无穷多解,不相容即指无解.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值