MATLAB中rng()用法,如何替换rand/randn

1. rand('seed',sd)、randn('seed',sd)和rand('state',sd)中各参数的含义

      我们知道,rand和randn都是用来产生伪随机数的,但是产生伪随机数的generator(发生器)有多种,而seed、state、twister等就是用来指定不同类型的伪随机数发生器的,其中seed 指“v4 generator”,state指“v5 generator”,twister指"Mersenne Twister generator"。第二个参数“sd”是“seed”的缩写,表示发生器的种子点,这个值将作为generator的输入,用于产生伪随机数。这里有必要先解释一下随机数和伪随机数的本质区别:随机数是在某次产生过程中,按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,不可重复的;而伪随机数则是按照一定算法模拟产生的,其结果是确定的,可重复的。当然这里的确定和可重复是指给定相同的初始值,算法模拟将产生相同的输出。

2. 为什么要用rand('seed',sd)、randn('seed',sd)和rand('state',sd)

        在实际应用中,比如检查程序问题时,为了重现错误,我们可能希望产生相同的伪随机数,这个时候就需要用这些表达式了。正如前面所说的,如果选用相同的generator并设置相同的初始值sd,那么你就可以得到同样伪随机数。

举个例子:

rand('seed',0); %选定generator并设定初始值

a=rand(3,3);

rand('seed',0);%设定同样的generator和相同的初始值

b=rand(3,3);

a

b

输出:

a =
   0.218959186328090   0.679296405836612   0.519416372067955  
   0.047044616214486   0.934692895940828   0.830965346112366 
   0.678864716868319   0.383502077489859   0.034572110527461 

b =
   0.218959186328090   0.679296405836612   0.519416372067955  
   0.047044616214486   0.934692895940828   0.830965346112366  
   0.678864716868319   0.383502077489859   0.034572110527461   

对比后你会发现a和b相等。

3. 为什么要用rng替换rand('seed',sd)、randn('seed',sd)和rand('state',sd)

        MATLAB官方给出的理由如下:

1)“seed”和“state”等词对于所对应的generator来说是一种误导;

2)除了“twister”以外,其他的generator都有问题;

3)这些表达式对于rand和randn采用了不同的generator,没必要。

所以在新版的MATLAB中已经不推荐这种方法了。

4. 替换的具体方法

下图是MATLAB给的一个替换的方式,最右边的才是它推荐的方法。

实际应用中举例如下(这里只以seed为例,其他的类似):

randn('seed',0);%rng(0);

a=randn(4,3);

randn('seed',0);%rng(0);

b=randn(4,3);

a

b

MATLAB推荐用注释掉的语句替换对应行的语句。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值