图像相似度算法的个人见解(python&opencv)

本文介绍了作者对图像相似度算法的改进思路,通过计算缩放后的图像每行像素平均值的方差来作为图像特征。与传统哈希算法不同,这种方法更注重图像波动的接近程度,而非简单的哈希对比。通过比较方差差值来判断图像的相似度,提高了算法的准确性。文章还提供了Python和OpenCV实现的代码示例。
摘要由CSDN通过智能技术生成

简述

前段时间写了篇博文 哈希算法实现图像相似度比较(Python&OpenCV) ,使用简单的哈希算法进行图像相似度判断。但是在实践中该算法达不到预期的效果:

  • 图像缩放8*8大小,图片信息内容严重丢失
  • 64位Hash值对比,计算出结果在[0,64]之内,很难大程度区分图像特征

因为存在以上问题,所以想自己尝试改进一下算法,尽可能提高算法的准确性。

算法逻辑

缩放图片

将需要处理的图片所放到指定尺寸,缩放后图片大小由图片的信息量和复杂度决定。譬如,一些简单的图标之类图像包含的信息量少,复杂度低,可以缩放小一点。风景等复杂场景信息量大,复杂度高就不能缩放太小,容易丢失重要信息。根据自己需求,弹性的缩放。在效率和准确度之间维持平衡。

灰度处理

通常对比图像相似度和颜色关系不是很大,所以处理为灰度图,减少后期计算的复杂度。如果有特殊需求则保留图像色彩。

计算平均值

此处开始,与传统的哈希算法不同:分别依次计算图像每行像素点的平均值,记录每行像素点的平均值。每一个平均值对应着一行的特征。

计算方差

对得到的所有平均值进行计算方差,得到的方差就是图像的特征值。方差可以很好的反应每行像素特征的波动,既记录了图片的主要信息。

比较方差

经过上面的计算之后,每张图都会生成一个特征值(方差)。到此,比较图像相似度就是比较图像生成方差的接近成程度。
一组数据方差的大小可以判断稳定性,多组数据方差的接近程度可以反应数据波动的接近程度。我们不关注方差的大小,只关注两个方差的差值的大小。方差差值越小图像越相似!

代码实现

使用python&Opencv对上述算法进行实现

获取图像每行像素平均值

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值