同事都被老板叫去开会了 ....... 已经开了两个小时了 GOD
广播变量 broadcast
这个变量只能在drive 端修改,不能在executor 端修改
不产生shuffle 的 优化,但是需要这个RDD 数据量较小
累加器 accumulator
在executor 端读,在driver 显示
(已经代码保存到有道ing)
package com.ib.e3 import org.apache.spark.{SparkConf, SparkContext} /** * Created by xxxxxxoooooo on 9/1/2016. */ object BroadcastAccumulators { def main(args: Array[String]) { val conf = new SparkConf().setAppName("BroadcastAccumulators").setMaster("local") val sc = new SparkContext(conf) //1 test for Broadcast //这个变量只能在drive 端修改,不能在executor 端修改 ,从下面的bRDD可以看出 其没有transformation 算子 ,也就是不可以修改 //但是可以读取里面的数据值 .value //不产生shuffle 的 优化,但是需要这个RDD 数据量较小 //Spark提供的Broadcast Variable,是只读的。并且在每个节点上只会有一份副本,而不会为每个task都拷贝一份副本。 // 因此其最大作用,就是减少变量到各个节点的网络传输 消耗,以及在各个节点上的内存消耗。 //使用到广播变量时,每个节点只会拷贝一份副本了。每个节点可以使用广播变量的value()方法获取值。广播变量是只读的。 val data = Array(1,3,4,6,8,9) val dataRDD = sc.parallelize(data) val num = 6 val broadcastNum = sc.broadcast(num) //对数组中的每一个值都加上num dataRDD.map(data => data+ broadcastNum.value ).foreach(x => println(x)) //2 test for Accumulators //主要用于多个节点对一个变量进行共享性的操作。Accumulator只提供了累加的功能。 // 但是确给我们 提供了多个task对一个变量并行操作的功能。但是task只能对Accumulator进行累加操作,不能读取它的值。 // 只有Driver程序可以读取 Accumulator的值。 val xxx = sc.accumulator(0) dataRDD.foreach( x => xxx.add(x)) println(xxx) } }
图片来自网络