import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.IntegerType
import java.util.Arrays.ArrayList
import java.util.ArrayList
object RDD2DataFrameByProgrammatically {
def main(args: Array[String]): Unit = {
val conf = new SparkConf() //创建sparkConf对象
conf.setAppName("My First Spark App") //设置应用程序的名称,在程序运行的监控页面可以看到名称
conf.setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val people = sc.textFile("scores.txt")
val schemaString = "clazz:String score:Integer"
//如果schema中制定了除String以外别的类型 在构建rowRDD的时候要注意指定类型 例如: p(2).toInt
val rowRDD = people.map(_.split("\t")).map(p => Row(p(0), p(1).toInt))
val schema =
StructType(schemaString.split(" ").map(fieldName => StructField(fieldName.split(":")(0), if (fieldName.split(":")(1).equals("String")) StringType else IntegerType, true)))
// val structFields = Array(StructField("clazz",StringType,true),StructField("score",IntegerType))
// val schema = StructType(structFields)
// val arr = Array(StructField("name",StringType,true),StructField("age",IntegerType,true))
// val schema = StructType.apply(arr)
val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)
peopleDataFrame.registerTempTable("clazzScore")
val results = sqlContext.sql("SELECT score,clazz FROM clazzScore")
// results.map(t => "age: " + t(0)).collect().foreach(println)
results.map(t => "clazz: " + t.getAs[String]("clazz")+"\tscore:"+t.getAs[Integer]("score")).collect().foreach(println)
}
}
RDD & schema 创建dataFrame
最新推荐文章于 2022-06-30 19:20:42 发布