学科成绩数据分析

import numpy as np

import matplotlib.pyplot as plt

# 假设 courses 数组已经给出

courses = np.array(['语文', '数学', '英语', '物理', '化学', '生物'])

# 假设 scores 数组已经给出

scores = np.array([

    [95, 75, 86, 63, 91, 86], # 高二1班

    [96, 93, 76, 85, 88, 76], # 高二2班

    [85, 66, 96, 93, 67, 87]  # 高二3班

])

# 班级标签

classes = ['高二1班', '高二2班', '高二3班']

# 设置图形大小和边距

plt.figure(figsize=(10, 6))

# 初始化x轴的位置(因为柱状图需要一组等距的x值)

x = np.arange(len(courses))

# 绘制柱状图,每个班级一组柱子

width = 0.3  # 柱子的宽度

for i, avg_scores in enumerate(scores):

    plt.bar(x + i * width, avg_scores, width, label=classes[i])

# 设置x轴标签和位置

plt.xticks(x + width * len(scores) // 2, courses, rotation=45

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值