投资的收益与风险的数学建模

问题的提出

假设市场上有 n n n中资产 s i ( i = 1 , 2 , . . . , n ) s_i(i=1, 2, ..., n) si(i=1,2,...,n)可以选择,先用数额为 M M M的相当大的资金作为一时期的投资,分别给出 n n n中资产的平均收益率 r i r_i ri,风险损失率 q i q_i qi,手续费 p i p_i pi和购买额度 u i u_i ui。其中购买额度指的是我们在购买某一种资产的时候,假设购买的额度小于 u i u_i ui,那么计算手续费的时候也要按照 u i u_i ui算。当 n = 4 n=4 n=4的时候数据如下表所示。

s i s_i si r i r_i ri q i q_i qi p i p_i pi u i u_i ui
s 1 s_1 s1 28 2.5 1 103
s 2 s_2 s2 21 1.5 2 198
s 3 s_3 s3 23 5.6 4.5 52
s 1 s_1 s1 25 2.6 6.5 40

我们假设 s 0 s_0 s0是存银行,没有交易费没有风险,且收益率 r 0 = 5 % r_0=5\% r0=5%

模型分析与建立

总体风险用所投资的 s i s_i si

### 投资收益风险数学建模 Matlab 实现 #### 建立投资组合优化模型 在金融领域,构建有效的投资组合是投资者关注的核心问题之一。通过合理的资产配置,在给定的风险水平下追求最大的预期回报成为常见的目标函数设定方式。 对于债券类资产的投资组合而言,可以采用均值-方差框架下的最优化算法来进行求解[^3]。该理论由Markowitz提出,旨在平衡期望收益波动性之间的关系,从而帮助决策者找到最优的资金分配方案。 #### 使用线性规划解决投资组合问题 当涉及到具体数值计算时,MATLAB提供了强大的工具箱支持——特别是`linprog()`函数用于处理标准形式的线性规划(LP)问题。此功能允许用户定义成本向量、不等式矩阵以及边界条件等参数,进而快速获得满足约束条件下最小化或最大化的目标值解决方案[^2]。 下面给出一段具体的Matlab代码示例,展示如何利用上述原理实现一个简单的固定收入型证券投资策略: ```matlab % 初始化变量 c = [-0.05 -0.27 -0.19 -0.185 -0.185]; % 负号表示我们要找的是最大化的净现金流 A = [0 0.025 0 0 0; 0 0 0.015 0 0; 0 0 0 0.055 0; 0 0 0 0 0.026]; b = zeros(4, 1); Aeq = [1 1.01 1.02 1.045 1.065]; beq = 1; vlb = zeros(5, 1); % 下限为零,即不允许卖空操作 vub = []; % 上界为空数组意味着无上限限制 figure(); hold on; grid minor; for a = linspace(0, 0.1, 100) b(:) = a; % 更新当前循环中的风险容忍度 options = optimoptions(@linprog,'Algorithm','dual-simplex'); [~, fval] = linprog(c, A, b, Aeq, beq, vlb, vub, [], options); plot(a,-fval,'r*'); % 绘制单个数据点并保持图形打开状态以便后续叠加更多结果 end xlabel('Risk Tolerance (\sigma)'); ylabel('Expected Return (%)'); title('Efficient Frontier of Portfolio Optimization'); legend({'Optimal Portfolios'},'Location','BestOutside') ``` 这段程序实现了从0到0.1范围内不同风险偏好程度下的有效前沿曲线绘制过程,并最终呈现出一系列可能的最佳投资比例组合及其对应的平均年化收益率估计值。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值