2021-7-11 数学建模

本文探讨了在数学建模中如何使用线性规划解决投资问题,以最大化收益并最小化风险。模型考虑了不同资产的收益率、交易费用和风险损失率,并通过设定风险阈值来寻找最佳投资组合。通过实例分析,展示了风险与收益之间的关系,揭示了投资者在不同风险偏好下的投资策略选择。
摘要由CSDN通过智能技术生成

数学建模 之 线性规划

—— 投资的收益和风险


一、问题的提出

市场上有n种资产 s i (i=1 ,2,…,n)可以选择,现用数额为M的相当大的资金作一个时期的投资。这n种资产在这一时期内购买 si,的平均收益率为 r i ,风险损失率为 qi,投资越分散,总的风险越少,总体风险可用投资的 si 中最大的一个风险来度量。

购买 si时要付交易费,费率为 pi, 当购买额不超过给定值 ui 时,交易费按购买 ui 计算。另外,假定同期银行存款利率是 ri ,既无交易费又无风险( r0=5% )。

已知 n =4 时相关数据如 表1.1 所列。

                                                     表1.1投资的相关数据
siri / %qi / %pi / %ui / 元
s1282.51103
s2211.52198
s3235.54.552
s4252.66.540

二、符号的规定和基本假设

  1. 符号规定
    (1) si表示第 i 种投资项目,如股票、债券等,i = 0,1,…,n, 其中s0指存人银行。
    (2) ri,pi,qi 分别表示 si 的平均收益率、交易费率、风险损失率,i = 0,1, … ,n, 其中 p0 = 0,q0 = 0。
    (3) ui 表示 si 的交易定额, i=1,2,…,n。
    (4) xi 表示投资项目 si 的资金,i=0,1,…n。
    (5) a表示投资风险度。
    (6) Q表示总体收益。

  2. 基本假设
    (1)投资数额M相当大,为便于计算,假设M=1。
    (2)投资越分散,总的风险越小。
    (3)总体风险用投资项目S;中最大的一个风险来度量。
    (4)n+1种资产s;之间是相互独立的。
    (5)在投资的这- -时期内,r,P:,q;为定值,不受意外因素影响。
    (6)净收益和总体风险只受r;,Pr,q;影响,不受其他因素干扰。

三、模型的分析与建立

(1)首先我们来确定总体的风险 ,选定总体风险用所投资的si中最大的一个风险来衡量
在这里插入图片描述
(2)根据题目的描述,购买 si (i=1,2,…,n) 所付交易费是一个分段函数:

在这里插入图片描述

题目所给的定值 ui (单位:元) 相对总投资 M 来说很少 , 那么piui 肯定就更小啦,
这样购买 si 的净收益可以简化为 (ri- pi) xi

(3)如果要使 净收益 尽可能大,并且 总体风险 尽可能小,那么这便是一个多目标规划模型。

目标函数为
在这里插入图片描述
约束条件为

在这里插入图片描述


(4)模型简化

  • 在实际投资中,投资者承受风险的程度不一样,若给定风险一个界限 a,使最大的一个风险率为a,即 qixi / M ≤ a (i=1,2,…,n),可找到相应的投资方案。

这样以来就可以把多目标规划变成一个目标的线性规划。

模型一 固定风险水平,优化收益
在这里插入图片描述


  • 若投资者希望总盈利至少达到水平 k 以上,在风险最小的情况下寻求相应的投资组合。

模型二 固定盈利水平,极小化风险
在这里插入图片描述
在这里插入图片描述


  • 投资者在权衡资产风险和预期收益两方面时,希望选择-一个令自己满意的投资组
    合。因此对风险收益分别赋予权重 s (0<s≤1)和 1-s , s称为投资偏好系数。

模型三
在这里插入图片描述

个人觉得模型三是对模型一和模型二的综合概括,通过设置偏好系数 s 使模型能够更加适应两种情况。

四、模型的求解

以模型一为例

在这里插入图片描述
由于a是任意给定的风险度,不同的投资者有不同的风险度。下面从a=0开始,以
步长 △a =0. 001 进行循环搜索,编制程序如下:

clc,clear
a=0;
hold on
while a<0.05
    c=[-0.05,-0.27,-0.19,-0.185,-0.185];
    A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];
    b=a*ones(4,1);
    Aeq=[1,1.01,1.02,1.045,1.065];
    beq=1;
    LB=zeros(5,1);
    [x,Q]=linprog(c,A,b,Aeq,beq,LB);
    Q=-Q;
    plot(a,Q,'*k');
    a=a+0.001;
end
xlabel('a'),ylabel('Q')

五、结果分析

风险 a 与收益 Q 之间的关系如图1.1所示,我们可以看出

(1)风险大,收益也大。

(2)当投资越分散时,投资者承担的风险越小,这与题意一致.
冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。

(3)在a=0.006 附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快;在这一点右边,风险增加很大时,利润增长很缓慢。所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的转折点作为最优投资组合,大约是 a=0.6%,Q=20%,
所对应的投资方案为

   风险度a=0.006,收益Q =0.2019,x~o~ =0, x~1~ =0.24, x~2~ =0.4, x~3~ =0.1091, x~4~ =0.2212。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值