这两天做leetcode发现自己对一个递归/动规的问题容易想错,特此来总结一下
总共3道题
- 一个是前几天碰见的面试题,给定一个二叉树还有一个给定的数值,让找到这课二叉树是否有一条路径上的值的和刚好等于给定的值(这里的路径只能从父节点到子节点)
- Leetcode 1367 这道题是相当于上面的变体,给定一个二叉树还有一个链表,判断二叉树上是否有一条路径刚好等于链表上的那条路径。
- 第三题也是leetcode上的一题,但是忘了哪道了。记得是一个字符串里,需要计算最长满足另外一个字符串的连续子串的问题。
上面的三个问题容易犯一个共同的错误就是递归去做这道题的时候,递归函数容易写成如下(比如以第二题为例):
bool isSubPath(ListNode* head, TreeNode* root) {
if(head==NULL)
return true;
if(root==NULL)
return false;
bool res=false;
if(head->val == root->val)
res = isSubPath(head->next, root->left) || isSubPath(head->next, root->right);
if(res == true)
return true;
res = res || isSubPath(head, root->left) || isSubPath(head, root->right);
return res;
}
每个递归函数里面有如下几种情况:
- 当
head->val == root->val
时可以搜索下一步 - 不论上一步是否相等,都可以保留完整的链表,如匹配root的两个子节点
但是按照上面函数的写法,我是想让这个函数表示,以root作为起始搜索的情况下,root也不一定作为那条路径的开始节点,来找到是否包含这个。
但是这样做会出现如下一种反例,就是head前k个满足root的路径,一直搜索到不满足时,它会不选当前的root,同时从root的子节点开始匹配head中k+1之后的情况,这种情况下,会让一些原本false的情况搜索成true。
所以对于这种情况只能挨个搜索,即先写一个必须包含当前root开始搜索的函数1,外层函数2是,遍历每个root看其是否满足上面的函数1
即正确的做法如下:
bool isSubPath(ListNode* head, TreeNode* root) {
if(root == NULL)
return false;
return isPureSubPath(head, root) || isSubPath(head, root->left) || isSubPath(head, root->right);
}
bool isPureSubPath(ListNode* head, TreeNode* root){
if(head==NULL)
return true;
if(root==NULL)
return false;
if(head->val == root->val)
return isPureSubPath(head->next, root->left) || isPureSubPath(head->next, root->right);
return false;
}
之前的第三题,我也犯了类似的错误,就是按照那种方式遍历,但是这样会出现中间断开之后再搜索的情况。