【机器学习】信息量,信息熵,交叉熵,KL散度和互信息(信息增益)

这篇博客介绍了信息论的基本概念,包括信息量、信息熵、交叉熵和KL散度。信息量与事件发生的概率负相关,熵表示分布的不确定性。交叉熵用于衡量模型预测与真实分布的差异,常作为机器学习的损失函数。KL散度是衡量两个概率分布差异的非负量,与交叉熵有直接关系。博客还讨论了互信息和信息增益的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先先强烈推荐一篇外文博客Visual Information Theory这个博客的博主colah是个著名的计算机知识科普达人,之前非常著名的那篇LSTM讲解的文章也是他写的。这篇文章详细讲解了信息论中许多基本概念的来龙去脉,而且非常的直观用了大量的图片,和形象化的解释。

信息量

信息量用一个信息所需要的编码长度来定义,而一个信息的编码长度跟其出现的概率呈负相关,因为一个短编码的代价也是巨大的,因为会放弃所有以其为前缀的编码方式,比如字母”a”用单一个0作为编码的话,那么为了避免歧义,就不能有其他任何0开头的编码词了.所以一个词出现的越频繁,则其编码方式也就越短,同时付出的代价也大.

I=log2(1p(x))=log2(p(x))

信息熵

而信息熵则代表一个分布的信息量,或者编码的平均长度

H(p)=xp(x)log2(1p(x))=xp(x)log2(p(x))

即信息量的均值

交叉熵 cross-entropy

交叉熵本质上可以看成,用一个猜测的分布的编码方式去编码其真实的分布,得到的平均编码长度或者信息量

Hp(q)=xq(x)log2(1p(x))

如上面的式子,用猜的的p分布,去编码原本真是为q的分布,得到的信息量

交叉熵 cross-entropy在机器学习领域的作用

交叉熵cross-entropy在机器学习领域中经常作为最后的损失函数
为什么要用cross-entropy呢,他本质上相当于衡量两个编码方式之间的差值,因为只有当猜测的分布约接近于真实分布,则其值越小。
比如根据自己模型得到的A的概率是80%,得到B的概率是20%,真实的分布是应该得到A,则意味着得到A的概率是100%,所以

L=iyilog(p(xi))+(1yi)log(1p(xi))

在LR中用cross-entry比平方误差方法好在:

  1. 在LR中,如果用平方损失函数,则损失函数是一个非凸的,而用cross-entropy的话就是一个凸函数
  2. 用cross-entropy做LR求导的话,得到的导数公式如下
    Lθj=i(yip(
### 信息熵 信息熵是一种衡量随机变量不确定性的指标。对于离型随机变量 \(X\),其概率质量函数为 \(P(X)\),则信息熵定义如下: \[ H(X) = - \sum_{i=1}^{n} P(x_i) \log_2(P(x_i)) \] 其中,\(P(x_i)\) 表示事件 \(x_i\) 发生的概率[^1]。 信息熵越高,则系统的不确定性越大;反之亦然。 --- ### 交叉熵 交叉熵是用来衡量两个概率分布之间差异的一种方法,在机器学习中广泛应用于分类任务中的损失计算。假设真实分布为 \(P\),预测分布为 \(Q\),那么交叉熵可以表示为: \[ H(P, Q) = - \sum_{i=1}^{n} P(x_i) \log(Q(x_i)) \] 这里需要注意的是,交叉熵不仅依赖于真实的概率分布 \(P\),还取决于模型预测的概率分布 \(Q\)。因此,它是评估模型性能的重要工具之一[^2]。 --- ### KL KL (Kullback-Leibler divergence),也称为相对熵,用于量化两个概率分布之间的差异程。给定两个概率分布 \(P\) \(Q\)KL 的公式为: \[ D_{KL}(P || Q) = \sum_{i=1}^{n} P(x_i) \log{\frac{P(x_i)}{Q(x_i)}} \] 值得注意的是,KL 具有 **非对称性** **非负性** 的特点。即通常情况下 \(D_{KL}(P || Q) \neq D_{KL}(Q || P)\)[^3]。 --- ### JS JS (Jensen-Shannon divergence)是对称版本的 KL ,解决了 KL 不对称的问题。它通过引入中间分布来实现这一点。设 \(M = \frac{1}{2}(P + Q)\),则 JS 可写成: \[ D_{JS}(P || Q) = \frac{1}{2} D_{KL}(P || M) + \frac{1}{2} D_{KL}(Q || M) \] 由于 JS 基于 KL 构建,所以它的取值范围在 \([0, 1]\) 内,并且满足对称性有限性条件。 --- ### 定义区别与联系 | 指标 | 描述 | |------------|------------------------------------------------------------------------------------------| | **信息熵** | 测量单个随机变量本身的不确定性 | | **交叉熵** | 量两个概率分布间的差异,主要用于监督学习中的目标优化 | | **KL ** | 计算一个分布相对于另一个分布的信息增益或“距离”,是非对称的 | | **JS ** | 基于 KL 改进而来,解决非对称问题并提供更稳定的数值表现 | 这些概念都属于信息论范畴,但在实际应用中有不同的侧重点。例如,交叉熵被频繁用作神经网络训练的目标函数,而 KL 更多地出现在变分推断等领域。 --- ### 在机器学习学习中的作用 - **信息熵**:帮助理解数据集内部结构以及特征的重要性。 - **交叉熵**:作为分类任务的核心损失函数,指导模型参数调整以最小化误差。 - **KL **:适用于生成对抗网络 (GANs) 或变分自编码(VAEs) 中隐空间分布匹配的任务。 - **JS **:相比 KL 更加稳定可靠,尤其适合处理不平衡样本情况下的相似比较场景。 --- ####
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值