结论总结
-
双射复合函数( g ∘ f g \circ f g∘f 双射)
- 内层函数 f f f:单射且全函数。
- 外层函数 g g g:满射。
-
满射复合函数( g ∘ f g \circ f g∘f 满射)
- 外层函数 g g g:必满射。
- 内层函数 f f f:未必满射(存在反例)。
-
单射复合函数( g ∘ f g \circ f g∘f 单射)
- 外层函数 g g g:未必单射(存在反例)。
- 内层函数 f f f:若 g g g 全函数,则必单射;否则可能不单射(需构造特定反例)。
复合函数性质总结: 1. 双射 → 内层单射全函数 + 外层满射 2. 满射 → 外层满射(内层未必满射) 3. 单射 → { 外层未必单射 外层全函数 → 内层单射 \boxed{ \begin{aligned} &\text{复合函数性质总结:} \\ &\quad 1.\ \text{双射 } \rightarrow \text{内层单射全函数 + 外层满射} \\ &\quad 2.\ \text{满射 } \rightarrow \text{外层满射(内层未必满射)} \\ &\quad 3.\ \text{单射 } \rightarrow \begin{cases} \text{外层未必单射} \\ \text{外层全函数 } \rightarrow \text{内层单射} \end{cases} \end{aligned} } 复合函数性质总结:1. 双射 →内层单射全函数 + 外层满射2. 满射 →外层满射(内层未必满射)3. 单射 →{外层未必单射外层全函数 →内层单射
1万+

被折叠的 条评论
为什么被折叠?



