自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(304)
  • 资源 (3)
  • 收藏
  • 关注

原创 Java基础系列

语法基础final关键字IO流序列化和反序列化Lambda表达式集合框架各种集合类的特性简介Collection集合接口(List及Set)HashMap集合TreeSet与Java自定义类型的排序集合类的线程安全问题ConcurrentHashMap深入理解HashMap+ConcurrrentHashMap扩容的原理设计模式设计模式概述UML类图软件设计原则单例模式工厂模式代理模式...

2021-02-16 22:41:21 458 1

原创 算法系列

leetcode题解4-寻找两个正序数组的中位数leetcode题解20-有效的括号leetcode题解14-最长公共前缀leetcode题解3-无重复字符的最长子串leetcode题解70-爬楼梯leetcode题解8-盛最多水的容器leetcode题解75-颜色分类leetcode题解50-Pow(x,n)leetcode题解26-删除数组的重复项leetcode题解167-两数之和 II - 输入有序数组leetcode题解54-螺旋矩阵leetcode题解53-最大子序和le

2021-02-08 15:41:25 1277 3

原创 Redis数据库系列

1.NoSQL简介2.当下NoSQL应用场景简介3.NoSQL数据库的四大分类4.分布式数据库CAP原理5.redis入门概述及简介6.redis五大数据类型7.redis事务8.主从复制Master/slave

2021-01-26 16:43:22 1973 4

原创 MySQL数据库系列

MySQL基础系列1.SQL语句的分类与MySQL简单查询2.MySQL条件查询3.排序与分组函数4.group by和having5.连接查询6.子查询及limit分页7.MySQL数据库事务MySQL高级系列1.索引2.视图3,存储过程和函数4.触发器5.MySQL存储引擎6.SQL优化步骤7.索引的使用及优化8.SQL优化...

2021-01-26 16:33:54 1880 1

原创 Drools实战

Drools实战1 个人所得税计算器本小节我们需要通过Drools规则引擎来根据规则计算个人所得税,最终页面效果如下:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M1HjKK8N-1653749251774)(…/media/pictures/Drools.assets/image-20200214132448956.png)]1.1 名词解释税前月收入:即税前工资,指交纳个人所得税之前的总工资应纳税所得额:指按照税法规定确定纳税人在一定期间所获得的所有应税.

2022-05-28 22:49:59 159 1

原创 Spring整合Drools

1 Spring简单整合Drools在项目中使用Drools时往往会跟Spring整合来使用。具体整合步骤如下:第一步:创建maven工程drools_spring并配置pom.xml<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

2022-05-28 22:46:27 199

原创 Drools高级语法

前面章节我们已经知道了一套完整的规则文件内容构成如下:关键字描述package包名,只限于逻辑上的管理,同一个包名下的查询或者函数可以直接调用import用于导入类或者静态方法global全局变量function自定义函数query查询rule end规则体本章节我们就来学习其中的几个关键字。1 global全局变量global关键字用于在规则文件中定义全局变量,它可以让应用程序的对象在规则文件中能够被访问。可以用来为规则文件提供数据

2022-05-28 22:43:59 106

原创 Drools规则属性

前面我们已经知道了规则体的构成如下:rule "ruleName" attributes when LHS then RHSend本章节就是针对规则体的attributes属性部分进行讲解。Drools中提供的属性如下表(部分属性):属性名说明salience指定规则执行优先级dialect指定规则使用的语言类型,取值为java和mvelenabled指定规则是否启用date-effective指

2022-05-28 22:41:50 88

原创 Drools基础语法

1 规则文件构成在使用Drools时非常重要的一个工作就是编写规则文件,通常规则文件的后缀为.drl。drl是Drools Rule Language的缩写。在规则文件中编写具体的规则内容。一套完整的规则文件内容构成如下:关键字描述package包名,只限于逻辑上的管理,同一个包名下的查询或者函数可以直接调用import用于导入类或者静态方法global全局变量function自定义函数query查询rule end规则体Drool

2022-05-28 22:38:51 124

原创 Drools规则引擎简介

1.问题引出现有一个在线申请信用卡的业务场景,用户需要录入个人信息,如下图所示通过上图可以看到,用户录入的个人信息包括姓名、性别、年龄、学历、电话、所在公司、职位、月收入、是否有房、是否有车、是否有信用卡等。录入完成后点击申请按钮提交即可。用户提交申请后,需要在系统的服务端进行用户信息合法性检查(是否有资格申请信用卡),只有通过合法性检查的用户才可以成功申请到信用卡(注意:不同用户有可能申请到的信用卡额度不同)。检查用户信息合法性的规则如下:规则编号名称描述1检查学历与薪

2022-05-28 22:25:03 444

原创 分布式与微服务-基础概念

分布式基础概念微服务微服务架构风格,就像是把一个单独的应用程序开发成一套小服务,每个小服务运行在自己的进程中,并使用轻量级机制通信,通常是 HTTP API 这些服务围绕业务能力来构建, 并通过完全自动化部署机制来独立部署,这些服务使用不同的编程语言书写,以及不同数据存储技术,并保持最低限度的集中式管理简而言之,拒绝大型单体应用,基于业务边界进行服务微化拆分,每个服务独立部署运行。集群&分布式&节点集群是个物理状态,分布式是个工作方式只要是一堆机器,也可以叫做集群,他们是不是一

2022-05-03 21:51:19 912

原创 Redis总结

redis版本升级说明接下来内容概述:安装redis6.0.8redis传统五大数据类型的落地应用知道分布式锁吗?有哪些实现方案?你谈谈对redis分布式锁的理解,删key的时候有什么问题?redis缓存过期淘汰策略redis的LRU算法简介安装redis6.0.8:Redis官网Redis中文网安全Bug按照官网提示,升级成为6.0.8进入Redis命令行,输入info,返回关于Redis服务器的各种信息(包括版本号)和统计数值。redis两个小细节说明redis基本类型

2022-04-05 22:12:06 1024

原创 JUC之AQS

可重入锁可重入锁理论可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,再进入该线程的的内层方法会自动获取锁(前提是锁对象得是同一个对象),不会因为之前已经获取过还没释放而阻塞。Java中ReentrantLock和synchronized都是可重入锁,可重入锁的一个优点是可一定程度避免死锁。将字分开解释:可:可以重:再次入:进入锁:同步锁进入什么? - 进入同步域(即同步代码块/方法或显示锁锁定的代码)一个线程中的多个流程可以获取同一把锁,持有这把同步锁可以再次进入。自己可以

2022-03-30 22:09:12 108

原创 无监督学习-K-means算法

1、 什么是无监督学习一家广告平台需要根据相似的人口学特征和购买习惯将美国人口分成不同的小组,以便广告客户可以通过有关联的广告接触到他们的目标客户。Airbnb 需要将自己的房屋清单分组成不同的社区,以便用户能更轻松地查阅这些清单。一个数据科学团队需要降低一个大型数据集的维度的数量,以便简化建模和降低文件大小。我们可以怎样最有用地对其进行归纳和分组?我们可以怎样以一种压缩格式有效地表征数据?这都是无监督学习的目标,之所以称之为无监督,是因为这是从无标签的数据开始学习的。2、 无监督学习包含算

2022-03-26 20:30:05 125

原创 分类算法-逻辑回归与二分类

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。1、逻辑回归的应用场景广告点击率(广告是否点击)是否为垃圾邮件是否患病金融诈骗(是否是金融诈骗)虚假账号看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器2、 逻辑回归的原理2.1 输入逻辑回归的输入就是一个线性回归的结果。2.2 激活函

2022-03-23 21:42:54 247

原创 机器学习之线性回归的改进-岭回归

1、 带有L2正则化的线性回归-岭回归岭回归,其实也是一种线性回归。只不过在算法建立回归方程时候,加上正则化的限制,从而达到解决过拟合的效果1.1 APIsklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver="auto", normalize=False)具有l2正则化的线性回归alpha:正则化力度,也叫 λλ取值:0~1 1~10solver:会根据数据自动选择优化方法sag:如果数据集、特征都比较大,选择

2022-03-23 21:30:06 73

原创 机器学习之欠拟合与过拟合

问题:训练数据训练的很好啊,误差也不大,为什么在测试集上面有问题呢?当算法在某个数据集当中出现这种情况,可能就出现了过拟合现象。1、 什么是过拟合与欠拟合欠拟合过拟合分析第一种情况:因为机器学习到的天鹅特征太少了,导致区分标准太粗糙,不能准确识别出天鹅。第二种情况:机器已经基本能区别天鹅和其他动物了。然后,很不巧已有的天鹅图片全是白天鹅的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅。1.1 定义过拟合:一个假设在训练数据上能够获得比其他假设更

2022-03-23 21:23:45 92

原创 机器学习之线性回归

1、 线性回归的原理1.1 线性回归应用场景房价预测销售额度预测金融:贷款额度预测、利用线性回归以及系数分析因子1.2 什么是线性回归1.2.1定义与公式线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归那么怎么理解呢?我们来看几个例子期末成绩:0.7×考试成绩+0.3×平时成绩房子价格 = 0.02×中心区域的

2022-03-20 21:55:00 82

原创 集成学习方法之随机森林

1、 什么是集成学习方法集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。2、 什么是随机森林在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终投票结果就是True...

2022-03-20 17:17:40 85

原创 分类算法之决策树

1、认识决策树决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法怎么理解这句话?通过一个对话例子想一想这个女生为什么把年龄放在最上面判断!!!!!!!!!2、决策树分类原理详解为了更好理解决策树具体怎么分类的,我们通过一个问题例子?问题:如何对这些客户进行分类预测?你是如何去划分?有可能你的划分是这样的那么我们怎么知道这些特征哪个更好放在最上面,那么决策树的真是划分是这样的2.1 原理信息熵、信息增益等

2022-03-19 22:17:29 51

原创 分类算法之朴素贝叶斯算法

1、 什么是朴素贝叶斯分类方法2、 概率基础2.1 概率(Probability)定义概率定义为一件事情发生的可能性扔出一个硬币,结果头像朝上某天是晴天P(X) : 取值在[0, 1]2.2 女神是否喜欢计算案例在讲这两个概率之前我们通过一个例子,来计算一些结果:问题如下:那么其中有些问题我们计算的结果不正确,或者不知道计算,我们有固定的公式去计算2.3 条件概率与联合概率联合概率:包含多个条件,且所有条件同时成立的概率记作:P(A,B)特性:P(A, B) = P

2022-03-19 21:45:49 78

原创 分类算法之K-近邻算法

问题:回忆分类问题的判定方法什么是K-近邻算法你的“邻居”来推断出你的类别1、K-近邻算法(KNN)1.1 定义如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。来源:KNN算法最早是由Cover和Hart提出的一种分类算法1.2 距离公式两个样本的距离可以通过如下公式计算,又叫欧式距离同时还有曼哈顿距离和闵可夫斯基距离2、电影类型分析假设我们有现在几部电影其中? 号电影不知道类别,如何去预测?我们可以利用K近邻算

2022-03-19 21:30:53 179

原创 sklearn转换器和估计器

1、转换器和估计器1.1 转换器想一下之前做的特征工程的步骤?1、实例化 (实例化的是一个转换器类(Transformer))2、调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)我们把特征工程的接口称之为转换器,其中转换器调用有这么几种形式fit_transformfittransform这几个方法之间的区别是什么呢?我们看以下代码就清楚了In [1]: from sklearn.preprocessing import StandardScalerI

2022-03-19 20:56:39 61

原创 特征工程之特征降维

1 降维降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程降低随机变量的个数相关特征(correlated feature)相对湿度与降雨量之间的相关等等正是因为在进行训练的时候,我们都是使用特征进行学习。如果特征本身存在问题或者特征之间相关性较强,对于算法学习预测会影响较大2 降维的两种方式特征选择主成分分析(可以理解一种特征提取的方式)3 什么是特征选择1 定义数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。

2022-03-13 21:31:19 291 1

原创 特征工程之特征预处理

什么是特征预处理?1 什么是特征预处理scikit-learn的解释provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators.翻译过来:通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程可以通过上面那张图

2022-03-13 21:13:23 36

原创 特征工程之特征提取

![什么是特征提取呢?1 特征提取1 将任意数据(如文本或图像)转换为可用于机器学习的数字特征注:特征值化是为了计算机更好的去理解数据字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习将介绍)2 特征提取APIsklearn.feature_extraction2 字典特征提取作用:对字典数据进行特征值化sklearn.feature_extraction.DictVectorizer(sparse=True,…)DictVectorizer.fit_trans

2022-03-13 20:59:26 890

原创 特征工程与数据集

1 数据集1.1 可用数据集Kaggle网址:https://www.kaggle.com/datasetsUCI数据集网址: http://archive.ics.uci.edu/ml/scikit-learn网址:http://scikit-learn.org/stable/datasets/index.html#datasets1 Scikit-learn工具介绍Python语言的机器学习工具Scikit-learn包括许多知名的机器学习算法的实现Scikit-learn文档完善,

2022-03-13 20:38:24 59

原创 机器学习概述

1.人工智能概述1.1 机器学习与人工智能、深度学习机器学习和人工智能,深度学习的关系:机器学习是人工智能的一个实现途径深度学习是机器学习的一个方法发展而来达特茅斯会议-人工智能的起点1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy)马文·闵斯基(Marvin Minsky,人工智能与认知学专家)克劳德·香农(Claude Shannon,信息论的创始人)艾伦·纽厄尔(Allen Newell,计算机科学家)赫伯特·西蒙(He

2022-03-13 20:10:59 57

原创 2021-10-24

DataSourceimport networkx as nximport numpy as npclass DataSource(object): def __init__(self,filename,n): self.filename = filename self.n = n self.G ={} def getGraph(self): self.G = nx.Graph() H = nx.pat

2021-10-24 18:50:01 2407

原创 结点重要性与SIR模型基础代码

SIR模型# simulate the information diffusion under SI modelimport networkx as nximport numpy as npimport randomimport matplotlib .pyplot as pltmax_iter_num = 25g = nx.karate_club_graph()# init the graph with random edge weight and set the inactive s

2021-10-16 12:22:59 163

原创 IDEA断点调试

1. Debug 的设置设置 Debug 连接方式,默认是 Socket。Shared memory 是 Windows 特有的一个属性,一般在 Windows 系统下建议使用此设置,内存占用相对较少。

2021-07-26 19:36:26 163 1

原创 dubbo原理

1.RPC原理一次完整的RPC调用流程(同步调用,异步另说)如下:服务消费方(client)调用以本地调用方式调用服务;client stub接收到调用后负责将方法、参数等组装成能够进行网络传输的消息体;client stub找到服务地址,并将消息发送到服务端;server stub收到消息后进行解码;server stub根据解码结果调用本地的服务;本地服务执行并将结果返回给server stub;server stub将返回结果打包成消息并发送至消费方;client stub接收到

2021-07-26 15:31:19 95 1

原创 dubbo高可用

zookeeper宕机与dubbo直连现象:zookeeper注册中心宕机,还可以消费dubbo暴露的服务。原因:健壮性监控中心宕掉不影响使用,只是丢失部分采样数据数据库宕掉后,注册中心仍能通过缓存提供服务列表查询,但不能注册新服务注册中心对等集群,任意一台宕掉后,将自动切换到另一台注册中心全部宕掉后,服务提供者和服务消费者仍能通过本地缓存通讯服务提供者无状态,任意一台宕掉后,不影响使用服务提供者全部宕掉后,服务消费者应用将无法使用,并无限次重连等待服务提供者恢复高可用:通过设计,减

2021-07-26 14:56:35 36

原创 dubbo配置

dubbo配置官网参考:http://dubbo.apache.org/zh-cn/docs/user/references/xml/dubbo-service.html1、配置原则将XML配置的标签名,加属性名,用点分割,多个属性拆成多行。比如:dubbo.application.name=foo等价于<dubbo:application name=“foo”/>JVM 启动 -D 参数优先,这样可以使用户在部署和启动时进行参数重写,比如在启动时需改变协议的端口。XML 次之,如果

2021-07-26 12:14:22 208

原创 dubbo基础

1、分布式基础理论1.1、什么是分布式系统?《分布式系统原理与范型》定义:“分布式系统是若干独立计算机的集合,这些计算机对于用户来说就像单个相关系统”分布式系统(distributed system)是建立在网络之上的软件系统。随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进。1.2.发展演变单一应用架构当网站流量很小时,只需一个应用,将所有功能都部署在一起,以减少部署节点和成本。此时,用

2021-07-25 22:09:22 70 1

原创 Springboot2数据访问

数据库场景的自动配置分析与整合测试导入JDBC场景<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jdbc</artifactId></dependency>在这个场景里面帮助我们导入了以下内容接着导入数据库驱动包(MySQL为例)为什么导入JDBC场景,官方不给我们

2021-07-24 18:42:34 104 2

原创 Springboot2Web原生组件注入

官方文档 - Servlets, Filters, and listeners使用原生的注解Servlet API@ServletComponentScan(basePackages = “com.atguigu.admin”) :指定原生Servlet组件都放在那里@WebServlet(urlPatterns = “/my”):效果:直接响应,没有经过Spring的拦截器?@WebFilter(urlPatterns ={"/css/","/images/"})@WebListenerMyS

2021-07-22 15:28:18 81 3

原创 Springboot2拦截器与文件上传

拦截器-登录检查与静态资源放行1.编写一个拦截器实现HandlerInterceptor接口2.拦截器注册到容器中(实现WebMvcConfigurer的addInterceptors())3.指定拦截规则(注意,如果是拦截所有,静态资源也会被拦截】还是以上一节Springboot视图解析与模板引擎为例,访问除登录页面外的其它任何请求,都应该是登录之后才能访问的。我们可以使用拦截器对请求进行拦截,从而进行相应的处理。public interface HandlerInterceptor {

2021-07-21 19:11:37 147 2

原创 Springboot视图解析与模板引擎

1.视图解析视图解析:SpringBoot默认不支持 JSP,需要引入第三方模板引擎技术实现页面渲染。视图解析原理流程1.目标方法处理的过程中,所有数据都会被放在 ModelAndViewContainer 里面。包括数据和视图地址2.方法的参数是一个自定义类型对象(从请求参数中确定的),把把重新放在 ModelAndViewContainer3.任何目标方法执行完成以后都会返回 ModelAndView(数据和视图地址)4.processDispatchResult 处理派发结果(页面如何响

2021-07-21 09:50:29 279 3

原创 Java设计模式-模板方法模式

1 概述在面向对象程序设计过程中,程序员常常会遇到这种情况:设计一个系统时知道了算法所需的关键步骤,而且确定了这些步骤的执行顺序,但某些步骤的具体实现还未知,或者说某些步骤的实现与具体的环境相关。例如,去银行办理业务一般要经过以下4个流程:取号、排队、办理具体业务、对银行工作人员进行评分等,其中取号、排队和对银行工作人员进行评分的业务对每个客户是一样的,可以在父类中实现,但是办理具体业务却因人而异,它可能是存款、取款或者转账等,可以延迟到子类中实现。定义:定义一个操作中的算法骨架,而将算法的一些步骤

2021-07-04 19:20:10 75 1

雷丰阳springboot2后台管理系统admin

雷丰阳springboot2后台管理系统源代码

2021-07-20

SQL - 100w条insert脚本 - 顺序乱序.zip

100w条insert脚本,包括按照主键顺序和不按照主键顺序的

2021-01-24

软件项目管理试题及答案(精简版)期末试题.doc

软件项目管理精装版课后习题,期末复习题,总共40多页,兄弟们需要的可以关注我后在下面留言即可。

2019-06-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除