SWUST OJ#538 Gaussian elimination

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<map>
#define endl '\n'
#define N 200005
typedef long long ll;
using namespace std;
double a[1005][1005];
int main() {
	int n,m;cin>>n>>m;
	for(int i=1;i<=n;i++) {
		for(int j=1;j<=m;j++) {
			cin>>a[i][j];
		}
	}
	for(int k=1;k<=n;k++) {
		for(int i=1;i<=n;i++) {
			if(i==k) continue;
			double p=a[i][k]/a[k][k];
			for(int j=1;j<=m;j++) {
				a[i][j]-=p*a[k][j];
			}
		}
	}
	for(int i=1;i<n;i++) {
		printf("%.2lf ",a[i][m]/a[i][i]);
	}
	printf("%.2lf\n",a[n][m]/a[n][n]);
	return 0;
}

naive gaussian elimination(朴素高斯消元法)是一种用于求解线性方程组的简单而直观的方法。它的基本思想是通过逐步消元将方程组转化为上三角形式,然后通过回代求解出未知数的值。 具体来说,朴素高斯消元法首先通过选取一个主元素(通常选择当前列中绝对值最大的元素)来消去其他行的相应元素。消元的过程中,我们将当前行除以主元素得到一个系数,然后将该系数乘以其他行的相应元素并与当前行相减,以此达到将其他行的相应元素消为0的目的。这个过程循环进行,直到将整个方程组转化为上三角矩阵的形式。 在得到上三角矩阵后,我们可以通过回代的方式求解出未知数的值。回代的过程从最后一行开始,将已知的未知数代入方程式,通过代入来求解出当前行的未知数。然后逐步向上代入求解出其他未知数,最终得到整个方程组的解。 朴素高斯消元法的优点是操作简单、容易理解,适用于小规模的线性方程组。然而,它也有一些缺点。首先,如果某个主元为0,那么消元的过程中会出现除0的操作,导致计算错误。其次,如果某些系数非常小,由于计算机的精度限制,可能导致结果的误差较大。 综上所述,朴素高斯消元法是一种简单而直观的方法,适用于小规模的线性方程组求解。然而,在处理较大规模或复杂方程组时,可能需要借助其他更高效、稳定的算法来进行求解。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值