《机器学习实战》笔记-介绍

本文是关于《机器学习实战》的读书笔记,作者通过实例和Python代码讲解机器学习算法,涉及k-近邻、决策树、朴素贝叶斯、Logistic回归等。文章介绍了书籍信息、内容概要,并提供了相关资源链接。

                                                                               《机器学习实战》笔记-介绍

  转载请注明地址:https://www.cnblogs.com/pengsky2016/p/10153958.html

  这段时间将学习《机器学习实战》,这本书抛开了繁杂的数学公式和证明,通过大量的示例,以及完整清晰的代码,以程序员更能够理解的方式来讲解这些机器学习的算法。由于本书使用的是Python语言讲解,因此大量的使用了NumPy和Matplotlib等Python机器学习中常用的第三方库。这里需要读者对这2个库的一些基本知识有一定熟悉。在这里记录下从这本书中学到的东西,文中的代码和主要内容也将均来自这本书,另外也会增加额外的一些知识点。

 

1.书籍信息

 

书名:Machine Learning in Action

译名:《机器学习实战》

作者:Peter Harrington

译者:李锐 李鹏 曲亚东 王斌

出版社:人民邮电出版社

ISBN:978-7-115-31795-7

页数:332

 

2.纸张、印刷与排版

 

正常的16开本,纸张白色。

字体大小、行段间距正常。代码等特殊模块区分度较高。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值