遗传算法matlab仿真实例

本文演示了使用简单遗传算法(带有精英保留)优化函数的Matlab仿真过程。目标函数为Max f(x1,x2)=100*(x1*x1-x2)^2+(1-x1)^2,在-2.0480到2.0480的范围内进行优化。文章通过设置仿真代数、群体规模、交叉变异概率等参数,并进行解码、适应度计算、遗传操作等步骤,展示了如何在Matlab中实现遗传算法。最后,绘制了最优适应度的进化曲线并输出了最优参数。" 104194917,8364623,数据库备份与恢复基础教程,"['数据库管理', 'SQL', '数据安全', '备份策略', '恢复技术']
摘要由CSDN通过智能技术生成
% Optimizing a function  using Simple Genetic Algorithm with elitist preserved


%Max f(x1,x2)=100*(x1*x1-x2).^2+(1-x1).^2; -2.0480<=x1,x2<=2.0480


% Author: Wang Yonglin (wylin77@126.com)


clc;clear all;


format long;%设定数据显示格式


%初始化参数


T=100;%仿真代数


N=80;% 群体规模


pm=0.05;pc=0.8;%交叉变异概率


umax=2.048;umin=-2.048;%参数取值范围


L=10;%单个参数字串长度,总编码长度2L


bval=round(rand(N,2*L));%初始种群


bestv=-inf;%最优适应度初值


%迭代开始


for ii=1:T


%解码,计算适应度


for i=1:N


        y1=0;y2=0;


        for j=1:1:L

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值