【BugFree】Leetcode Array 标签

Array类问题汇总

难度由上到下递增
- Array Partition I


Array Partition I(#561 Easy)

问题描述

Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), …, (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

Example
Input: [1,4,3,2]
Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).

解法

    class Solution {
        public int arrayPairSum(int[] nums) {
            Arrays.sort(nums);
            int result = 0;

            for (int i = 0; i < nums.length; i+=2){
                result += nums[i];
            }

            return result;
        }
    }

代码时间复杂度:O(n)
代码解释:

  1. Assume in each pair i, bi >= ai.
  2. Denote Sm = min(a1, b1) + min(a2, b2) + … + min(an, bn). The biggest Sm is the answer of this problem. Given 1, Sm = a1 + a2 + … + an.
  3. Denote Sa = a1 + b1 + a2 + b2 + … + an + bn. Sa is constant for a given input.
  4. Denote di = |ai - bi|. Given 1, di = bi - ai. Denote Sd = d1 + d2 + … + dn.
  5. So Sa = a1 + a1 + d1 + a2 + a2 + d2 + … + an + an + di = 2Sm + Sd => Sm = (Sa - Sd) / 2. To get the max Sm, given Sa is constant, we need to make Sd as small as possible.
  6. So this problem becomes finding pairs in an array that makes sum of di (distance between ai and bi) as small as possible. Apparently, sum of these distances of adjacent elements is the smallest. If that’s not intuitive enough, see attached picture. Case 1 has the smallest Sd.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值