区间素数筛选法 joj 1928 Prime Distance

1928: Prime Distance


ResultTIME LimitMEMORY LimitRun TimesAC TimesJUDGE
3s8192K7223Standard
The branch of mathematics called number theory is about properties ofnumbers. One of the areas that has captured the interest of numbertheoreticians for thousands of years is the question of primality. Aprime number is a number that is has no proper factors (it is onlyevenly divisible by 1 and itself). The first prime numbers are2,3,5,7 but they quickly become less frequent. One of the interestingquestions is how dense they are in various ranges. Adjacent primesare two numbers that are both primes, but there are no other primenumbers between the adjacent primes. For example, 2,3 are the onlyadjacent primes that are also adjacent numbers.

Your program is given 2 numbers: L and U(1<=L<U<=2,147,483,647), and you are to find the twoadjacent primes C1 and C2 (L<=C1<C2<=U) that are closest(i.e. C2-C1 is the minimum). If there are other pairsthat are the same distance apart, use the first pair. You arealso to find the two adjacent primes D1 and D2 (L<=D1<D2<=U)where D1 and D2 are as distant from each other as possible (againchoosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L andU, with L < U. The difference between L and U willnot exceed 1,000,000.

Output

For each L and U,the output will either be the statement that there are no adjacentprimes (because there are less than two primes between the two givennumbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Output for Sample Input

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

#include <stdio.h>
#include <math.h>
bool prime2[1000010];
bool prime1[50000];
int prime3[1000010];
int main ()
{
    long long L,U;
    for(int i=3;i<50000;i++)
        if(i%2==0) prime1[i]=0;
        else prime1[i]=1;
    for(int i=3;i*i<=50000;i+=2)
        if(prime1[i])
        {
            for(int j=i*i;j<50000;j+=i)
                prime1[j]=0;
        }
    prime1[2]=1;
    while(scanf("%lld%lld",&L,&U)==2)
    {
        for(long long i=L;i<=U;i++)
            if(i%2==0) prime2[i-L]=0;
            else prime2[i-L]=1;
        if(L==2) prime2[0]=1;
        if(L==1) { prime2[1]=1; prime2[0]=0;}
        //printf("!!!%lf\n",sqrt(U+0.0));
        for(int i=3;i<=sqrt(U+0.0);i+=2)
        if(prime1[i])
        {
           //printf("%d\n",i);
                for(long long j=(L/i>2?L/i:2)*i;j<=U;j+=i)
                if(j>=L) prime2[j-L]=0;
        }
        int cnt=0,min=10000000,max=-1;
        int x1=0,y1=0,x2=0,y2=0;
        for(int i=0;i<=U-L;i++)
        if(prime2[i]) prime3[cnt++]=i+L;
        if(cnt<=1) printf("There are no adjacent primes.\n");
        else
        {
                for(int i=0;i<cnt-1;i++)
                {
                        if(prime3[i+1]-prime3[i]<min) {x1=prime3[i],y1=prime3[i+1],min=prime3[i+1]-prime3[i];}
                        if(prime3[i+1]-prime3[i]>max) {x2=prime3[i],y2=prime3[i+1],max=prime3[i+1]-prime3[i];}
                }
                printf("%d,%d are closest, %d,%d are most distant.\n",x1,y1,x2,y2);
        }
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值