8-1决策树

本文介绍了熵在衡量随机变量不确定性中的作用,包括联合熵、条件熵、对偶式和互信息。接着深入讨论了决策树的学习过程,如ID3、C4.5和CART算法,以及如何通过信息增益、信息增益率和基尼指数来选择最佳分叉依据。最后,文章提到了解决决策树过拟合问题的剪枝策略。
摘要由CSDN通过智能技术生成

一、熵 entropy

表示随机变量不确定性,熵越大,不确定性越大。

1.联合熵

两个随机变量X,Y的联合分布,可以形成
联合熵Joint Entropy,用H(X,Y)

2.条件熵:

H(Y|X) = H(X,Y) - H(X)

 根据互信息定义展开得到

H(Y|X) = H(Y) - I(X,Y)

3. 对偶式
 H(X|Y)= H(X,Y) - H(Y)
 H(X|Y)= H(X) - I(X,Y)

4.交叉熵

相对熵,又称互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度等
设p(x)、q(x)是X中取值的两个概率分布,则p对q的
相对熵是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值