5、战略网络情报与主动防御:构建网络安全防线

战略网络情报与主动防御:构建网络安全防线

1. 战略网络情报一级成熟度

在能力成熟度模型的一级,组织需要为网络情报计划的成功奠定基础。这一阶段开发的流程和程序将决定后续能力建设的基调,以支持该计划的推进。此阶段主要致力于确保 IT 运营和 IT 安全之间能够实现基本信息的顺畅流动。以下是一些信息请求的示例:

1.1 设备与软件清单

  • 授权设备和软件清单 :是否有授权设备和软件的清单?清单存放在哪里?由谁管理该清单?
  • 未授权设备和软件清单 :是否有未授权设备和软件的清单?是否有相关政策来处理此类情况?控制这种情况的程序是什么?

1.2 软硬件安全配置管理

  • 是否有硬件和软件加固标准?
  • 是否将这些标准传达给支持我们的供应商?
  • 如何确保符合这些标准?

1.3 漏洞评估与修复

  • 是否具备对网络进行漏洞扫描的能力?
  • 谁负责漏洞修复?
  • 是否有修复特定漏洞的时间表?

1.4 管理权限控制

  • 谁拥有管理权限?
  • 谁不需要管理权限?
  • 他们可以访问哪些资源?

如果在战略能力成熟度模型的一级,IT 运营和安全在信息收集、分析和传播方面没有实现有效整合,就很难对其他层面的事项有清晰的情报认知。

【源码免费下载链接】:https://renmaiwang.cn/s/rpwet 在进行科学计算和数据分析时,使用Python中的Numpy库是必不可少的。Numpy库提供了高性能的多维数组对象和用于处理这些数组的工具,而数组和矩阵是Numpy中两个非常重要的概念。数组(array)是一个通用于各种数值运算的同质数据结构,而矩阵(matrix)则是一种特定的二维数组,用于更专业的数学运算。在使用过程中,我们可能需要在数组和矩阵之间进行转换。本文将详细介绍如何在Numpy中进行这两种类型之间的转换,并通过实例代码进行说明。我们来了解一下什么是Numpy中的数组和矩阵。Numpy中的数组(ndarray)是一种多维的数组对象,它可以处理数值计算中的各种数据类型,包括整数、浮点数、复数等。数组的维度可以是任意的,但数组中的所有元素必须是相同的数据类型。数组通常用于一般的数值计算和数据处理任务。而Numpy中的矩阵(matrix)则是一种特殊的二维数组,它在某些方面传统的数学上的矩阵概念相仿,例如支持矩阵乘法,具有逆矩阵等属性。Numpy的矩阵类名为matrix,它继承自ndarray类,但增加了一些特定于矩阵的操作方法。当我们需要进行特定的矩阵运算,比如矩阵乘法时,使用matrix对象可能会更加直观和方便。但是,在需要进行一些通用的数组操作时,使用ndarray对象更为合适。下面将介绍如何将ndarray对象转换为matrix对象,以及如何将matrix对象转换回ndarray对象。1. ndarray转换成matrix在Numpy中,要将一个ndarray对象转换为matrix对象,可以使用numpy库中的mat函数,或者直接将ndarray对象传递给numpy.matrix的构造器。下面给出一个示例:```pythonimport numpy as np# 创建一个4x4的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值