稀疏矩阵

稀疏矩阵(sparse matrix)是矩阵的一种特殊情况,其非零元素的个数远远小于零元素的个数,且分布没有规律。

设一个m行n列的矩阵有t个非零元素,则系数因子δ为:

         

通常当δ<0.05时,我们称该矩阵为稀疏矩阵。如下图所示:

         0   0   2     0    0     0   0

         3   0   0   -11   0      0   0

A=    0    0   0   -6    0      0   0

         0   0   0     0    0   -17   0

         0   9   0     0   19     0   0

         0   0   0    -8   0       0   -52

A为稀疏矩阵。

存储:

       对于系数矩阵来说,采用二维数组的存储方法既浪费大量的存储单元用来存储零元素,又要在运算中花费大量的时间进行零元素的无效计算,显然并不可取。并且在实际的工程应用中,待处理的系数矩阵往往是很大的。例如,建立计算机网络时,用999条线路把1000个站点连接起来。用以表示这个网络的连接矩阵有1000*1000个矩阵元素,其中只有999个非零元素。显然,把所有的零元素都存在计算机中是不经济的,所以必须必须考虑对稀疏矩阵的压缩存储。

       必须对每一个非零元素,保存它的下标和值,我们可以采用三元组<row, column, value>来唯一的确定一个矩阵元素。因此,稀疏矩阵需要使用一个三元数组(三元组表)来表示,在该表中,以行优先的顺序依次存放。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值