文本过滤与处理 文本过滤与处理1. cat指令:连接文件并显示内容2. more指令:文件内容分屏查看器3. less指令:分屏显示文件内容4. grep指令:在文件中搜索匹配的行5. head指令:显示文件的头部内容6. tail指令:输出文件尾部内容7. wc指令:统计文件的字节数、单词数和行数8. uniq指令:报告或忽略文件中的重复行9. cut指令:删除文件中的指定字...
因特网的路由选择协议 因特网的路由选择协议1. 路由选择协议1.1 理想路由算法应具备的特点注:路由选择协议的核心就是路由算法。一个实际的路由选择算法,应尽可能接近于理想的算法,在不同的应用条件下,对以下提出的六方面也可有不同的侧重。 (1)算法必须是正确的和完整的。 (2)算法在计算上应简单。 (3)算法应能适应通信量和网络拓扑的变化。 (4)算法应具有稳定性。 (5)算法应是公平的。 (6)算法应是最佳的——相
网际控制报文协议ICMP 网际控制报文协议ICMP1. 网际控制报文协议ICMP(Internet Control Message Protocol)ICMP:是因特网的标准协议,但不是高层协议,而是IP层的协议。ICMP:是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。ICMP报文:作为IP层数据报的数据,加上数据报的首部,组成IP数据报发生出去。ICMP报文的格式如下: 注意: 1.在
二叉树(Binary Tree) 二叉树(Binary Tree)1. 二叉树的概念及其特点二叉树是树形结构的一种重要类型。二叉树是每个结点最多有两个子树的树结构,通常子树被称作“左子树(left subtree)“和“右子树(right subtree)”。二叉树的子树有左、右之分,其子树的次序不能颠倒。注:二叉树是递归定义的,分支数最大不超过2的有根有序树。2. 二叉树的五种不同形态空二叉树,一个结点也没有,如图(1)。只有
无分类编址CIDR(构造超网) 无分类编址CIDR(构造超网)1. 无分类编址CIDR(Classless Inter-Domain Routing,读音“sider”)无分类编址:即无类别域间路由。无分类编址:是一个在Internet上创建附加地址的方法,这些地址提供给服务提供商(ISP),再由ISP分配给客户。无分类编址:将路由集中起来,使一个IP地址代表主要骨干提供商服务的几千个IP地址,从而减轻Internet路由器的负担。2
IP子网划分 IP子网划分1. 划分子网划分子网:又称作“子网寻址”或“子网路由选择”。IP子网划分:实际上就是设计子网掩码的过程。注:当没有划分子网时,IP地址为两级结构(IP地址::={<网络号>,<主机号>})。当划分了子网后,IP地址为三级结构(IP::={<网络号>,<子网号>,<主机号>}),划分子网只是把IP地址的主机号host-id进行再划分,而不改变IP地址原本的网络号net-id。2. 子网掩码(
IP层转发分组的流程 IP层转发分组的流程1. 根据目的网络地址来确定下一跳路由器,这样做的结果如下:1.1 IP数据报最终一定可以找到目的主机所在目的网络上的路由器(可能要通过多次的间接交付)。1.2 只有到达最后一个路由器时,才试图向目的主机进行直接交付。注:在互联网上转发分组时,是从一个路由器转发到下一个路由器。总之,在路由表中,对每一条路由最主要的是以下两个信息:(目的网络地址,下一跳地址)。2. 特定主机路由
树(Tree) 树(Tree)1. 树的概念树形结构是以分支关系定义的层次结构,是一类重要的非线性数据结构。树是包含n(n>0)个结点的有穷集,也就说树是由一个集合以及在该集合上定义的一种关系构成的。树可分为无根树(自由树、无序树)和有根树(系统树、有序树)。 (1)无根树(unrooted tree): 在离散数学中指无环连通无向图。 (2)有根树(rooted tree):指具有方向的系统发生树(phylogen
广义表(Generalized List) 广义表(Generalized List)1. 广义表的概念1.1 广义表的定义广义表(Generalized List,又称列表,或表)是一种非线性的数据结构,是线性表的一种推广。广义表中放松对表元素的原子限制,容许它们具有其自身结构。即广义表的定义是递归的,因为在表的描述中又用到了表,允许表中有表,这种递归的定义能够很简洁地描述庞大而复杂的结构。一个广义表LS定义为n(n≥0)个元素a0,a1,a
字符串(String) 字符串(String)1. 字符串的概念1.1 字符串的定义字符串,是一串文字和符号的序列,是由零个或多个字符的顺序排列所组成的数据结构,其基本组成元素是单个字符(char),字符串的长度可变。字符串简称为串(String),是n(n≥0)个字符的一个有限序列。通常可记为S=”a0a1a2……an−1”,其中,S是串名,可以是串变量名,也可以是串常量名。用引号‘…’或“…”作为分界符括起来的叫做串值,
稀疏矩阵(Sparse Matrix) 稀疏矩阵(Sparse Matrix)注:压缩存储的矩阵可以分为特殊矩阵和稀疏矩阵。对于那些具有相同元素或零元素在矩阵中分布具有一定规律的矩阵,被称之为特殊矩阵。对于那些零元素数据远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称之为稀疏矩阵。1. 稀疏矩阵的概念在矩阵中,若数值为0的元素数目远远多于非0元素的数目时,则称该矩阵为稀疏矩阵。与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。
特殊矩阵——三对角矩阵(Tridiagonal Matrix) 特殊矩阵——三对角矩阵(Tridiagonal Matrix)1. 三对角矩阵的概念三对角矩阵就是对角线、邻近对角线的上下次对角线上有元素,其他位置均为0的矩阵。三对角矩阵是一种特殊的上Hessenberg矩阵(这个就是上三角矩阵加上下三角部分的第一条次对角线有元素,其他都为0元素)。2. 三对角矩阵的特性设一个n*n的方阵A,对于矩阵A中的任一元素aij,当|i-j|>1时,有aij=0(0≤i≤n
特殊矩阵——对称矩阵(Symmetric Matrix) 特殊矩阵——对称矩阵(Symmetric Matrix)注:压缩存储的矩阵可以分为特殊矩阵和稀疏矩阵。对于那些具有相同元素或零元素在矩阵中分布具有一定规律的矩阵,被称之为特殊矩阵。对于那些零元素数据远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称之为稀疏矩阵。1. 对称矩阵的概念元素以主对角线为对称轴对应相等的矩阵。2. 对称矩阵的特性对角矩阵都是对称矩阵,对称矩阵必须是方形矩阵。设一个n
多维数组(Multi-dimensional Array) 多维数组(Multi-dimensional Array)1. 多维数组的概念多维数组是指二维及以上的数组。数组是下标(index)和值(value)组成的序对的集合。在数组中,每个有定义的下标都与一个值对应,这个值称作数组元素。 (1)二维数组:”数组元素为一维数组”的一维数组。 (2)三维数组:”数组元素为二维数组”的一维数组。 (3)四维数组:”数组元素为三维数组”的一维数组,如此类推。静态
双端队列(Double-ended Queue) 双端队列(Double-ended Queue)注:队列是一种只允许在一端删除而在另一端插入的数据结构。双端队列(Deque)是队列的一种拓展,它可以在队列的两端进行插入和删除。1. 双端队列(Deque)的概念1.1 双端队列的定义双端队列是限定插入和删除操作在表的两端进行的线性表,是一种具有队列和栈的性质的数据结构。1.2 双端队列的特点双端队列中的元素可以从两端入队和出队,其限定插入和删除
优先级队列(Priority Queue) 优先级队列(Priority Queue)注:队列是一种特征为FIFO的数据结构,每次从队列中取出的是最早加入队列中的元素。但是,许多应用需要另一种队列,每次从队列中取出的应是具有最高优先权的元素,这种队列就是优先级队列(Priority Queue),也称为优先权队列。1. 优先级队列的概念1.1 优先级队列的定义优先级队列是不同于先进先出队列的另一种队列。每次从队列中取出的是具有最高优先权的元素。
迷宫最短路径问题(ShortestPath)的求解——利用链式队列 迷宫最短路径问题(ShortestPath)的求解——利用链式队列注:借助于栈求解迷宫问题时,并不能保证找到一条从迷宫入口到迷宫出口的最短路径。而借助于队列,可以找到从迷宫入口到迷宫出口的最短路径(如果有的话)。在迷宫中寻找最短路径问题在其他领域也存在,例如,在解决电路布线问题时,一种很常用的方法是在布线区域叠上一个网格,该网格把布线区域划分成n*m个方格,就像迷宫一样。从一个方格a的中心点连接到另一个方格b的中
打印杨辉三角形(Pascal's triangle)——利用链式队列 打印杨辉三角形(Pascal’s triangle)——利用链式队列1. 杨辉三角的概念杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。将二项式(a+b)i展开,其系数构成杨辉三角形(国外称Pascal’s triangle),按行将展开式系数的前n行打印出来。从三角形的形状可知,除第1行以外,在打印第i行时,用到上一行(第i-1行)的数据,在打印第i+1行时,又用到第i行的数