N年没在CSDN上发布文章了,今天抽空发现10年前,转发过一篇量子隐形传输都文章,还有朋友留言说是谎言,2019年,量子隐形传输有了重大的进展,没想10年前尽然接触过量子传输,看样子还是要留下自己学习的足迹
从去年开始研究人工智能,下面基于 tensorflow 提供的DEMO,修改了一个可以查看 训练数据(图片对应的数字)的代码
# coding=utf-8 # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # encoding: utf-8 """A very simple MNIST classifier. See extensive documentation at http://tensorflow.org/tutorials/mnist/beginners/index.md """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Import data from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import math def drawDigit(position, image, title): plt.subplot(*position) plt.imshow(image.reshape(-1, 28), cmap='gray_r') plt.axis('off') plt.title(title) def batchdraw(): images, labels = mnist.train.next_batch(196) image_number = images.shape[0] row_number = math.ceil(image_number ** 0.5) # type: int column_number = row_number plt.figure(figsize=(row_number, column_number)) for i in range( int(row_number)): for j in range(int(column_number)): index = int( i * column_number + j) if index < image_number: position = (row_number, column_number, index + 1) image = images[index] title = 'actual:%d' % (np.argmax(labels[index])) drawDigit(position, image, title) mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) sess = tf.InteractiveSession() # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) # Train tf.initialize_all_variables().run() for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) train_step.run({x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # predint = accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}) test_data = mnist.test.images test_labels = mnist.test.labels print(mnist.train.images.shape) # print(mnist.test.images[0]) # print() print(dir(mnist.test)[-5:]) print(mnist.test.num_examples) batch_testxs = mnist.test.next_batch(100) # plt.figure() # im = test_data[0].reshape(28, 28) # # im = batch_testxs[0].reshape(28, 28) # plt.imshow(im,'gray') # plt.show() # im = im.convert('L')test_data # tv = list(im.getdata()) # y_conv = [(255-x)*1.0/255.0 for x in im] #显示一组图片,同时打印这组图片对应的labels # fig, ax = plt.subplots(nrows=4,ncols=5,sharex='all',sharey='all') # ax = ax.flatten() # for i in range(20): # print('test: %s' % np.argmax(test_labels[i])) # img = test_data[i].reshape(28, 28) # ax[i].imshow(img,cmap='Greys') # ax[0].set_xticks([]) # ax[0].set_yticks([]) # plt.tight_layout() # plt.show() #end #显示一张图片,包含数字 和 识别的 结果 batchdraw() plt.show() # 显示一张图片,包含数字 和 识别的 结果 结束 prediction = tf.argmax(im, 1) predint=prediction.eval(feed_dict={x: [mnist.test.images], keep_prob: 1},session=sess) print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels})) print(predint[0])