PyTorch深度学习项目实战100例
文章平均质量分 88
原价199,限时99.9🔥火爆订阅中(五日后恢复原价)。本专栏主要分享深度学习实战案例(内附源码及项目原理介绍),订阅后可查看《深度学习100例》的所有文章。
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
海洋 之心
阿里云社区专家博主,图神经网络-大数据-推荐系统研究者,专注于计算机领域前沿技术的分享等人工智能算法研究工作
展开
-
最适合入门的100个深度学习项目
本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2022-10-17 16:30:23 · 105511 阅读 · 165 评论 -
【PyTorch深度学习项目实战100例目录】项目详解 + 数据集 + 完整源码
大家好,我是阿光。本专栏整理了《深度学习100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。正在更新中~ ✨。原创 2022-09-30 20:29:47 · 84659 阅读 · 115 评论 -
Top 100 Deep Learning Projects for Beginners
🚨注意🚨:Recent feedback from fans has revealed that some subscribers are reselling the content of this column. We hereby declare that the content of this column is intended solely for learning purposes and may not be sold in any way. Without the author’s pe原创 2024-02-28 10:31:28 · 362 阅读 · 0 评论 -
PyTorch深度学习项目实战100例数据集
最近很多订阅了的用户私信咨询有些数据集下载不了以及一些文章中没有给出数据集链接,为了解决这个问题,专门开设了本篇文章,提供数据集下载链接,打包100例的所有数据集。本专栏适用人群:深度学习初学者,专栏将具体讲解如何快速搭建深度学习模型用自己的数据集实现深度学习小项目。 本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2023-01-30 14:42:33 · 23888 阅读 · 82 评论 -
LSTM+注意力机制(Attention)实现时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2023-01-16 12:20:02 · 7327 阅读 · 14 评论 -
LSTM+CNN实现时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2023-01-16 08:00:00 · 5628 阅读 · 9 评论 -
CNN(一维卷积Conv1D)实现时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2023-01-14 08:00:00 · 7907 阅读 · 8 评论 -
MLP(ANN)实现时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,包含项目原理以及源码,每一个项目实例都附带有`完整的代码+数据集。原创 2023-01-13 08:00:00 · 2948 阅读 · 7 评论 -
BiLSTM(双向LSTM)实现时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2023-01-12 08:00:00 · 3591 阅读 · 9 评论 -
RNN实现时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2023-01-11 08:00:00 · 3697 阅读 · 21 评论 -
LSTM实现时间序列预测(PyTorch版)
为了训练数据,首先定义LSTM模型,然后再定义对应的损失函数,由于我们这里是风速预测,显然是个回归问题,所以采用回归问题常用的MESLoss(),如果可以的话,可以自定义损失函数,针对自己的项目需求定义对应的损失函数。对于优化器来讲,使用的也是目前常用的Adam优化器,对于新手来讲也可以多多尝试其它的优化器,比如SGDRMSprop等,对于优化器的选择,可以参考这篇文章Pytorch 30种优化器总结。原创 2023-01-09 18:50:10 · 12333 阅读 · 16 评论 -
基于PyTorch+Transformer实现谣言检测系统
本项目使用基于`PyTorch+Transformer`的谣言检测模型,将文本中的谣言事件进行连续向量化,通过一维卷积神经网络的学习训练来挖掘表示文本深层的特征,避免了特征构建的问题,并能发现那些不容易被人发现的特征,从而产生更好的效果。原创 2022-12-31 15:36:43 · 5005 阅读 · 21 评论 -
基于PyTorch+CNN一维卷积实现短期电力负荷预测
本项目使用了一种基于一维卷积CNN短期电力负荷预测方法,该方法将历史负荷数据作为输入,将输入向量构造为时间序列形式作为 Conv1D 网络的输入,建模学习特征内部动态变化规律,最后完成短期负荷预测。原创 2022-12-31 15:37:47 · 4244 阅读 · 15 评论 -
基于PyTorch+Attention注意力机制实现天气变化的时间序列预测
由于大气运动极为复杂,影响天气的因素较多,而人们认识大气本身运动的能力极为有限,因此天气预报水平较低.预报员在预报实践中,每次预报的过程都极为复杂,需要综合分析,并预报各气象要素,比如温度、降水等.现阶段,以往极少出现的极端天气现象越来越多,这极大地增加了预报的难度。原创 2022-12-31 15:37:58 · 3777 阅读 · 2 评论 -
基于PyTorch+CNN实现谣言检测任务
本项目使用基于PyTorch+CNN(一维卷积)的谣言检测模型,将文本中的谣言事件进行连续向量化,通过一维卷积神经网络的学习训练来挖掘表示文本深层的特征,避免了特征构建的问题,并能发现那些不容易被人发现的特征,从而产生更好的效果。原创 2022-12-31 15:36:52 · 2885 阅读 · 1 评论 -
基于MultinomialNB多项式贝叶斯分类器实现中文文本情感分类任务
本项目是使用机器学习的经典算法MultinomialNB多项式贝叶斯模型进行文本情感分析,针对数据为购物评价信息,可以判断出语料所含情感的积极性,实现思路就是针对评价进行二分类,也就是简单的指出评价是正面的还是负面的。原创 2022-12-31 15:37:38 · 1505 阅读 · 1 评论 -
基于Pytorch+CNN实现英文文本语义相似度
语义相似度是NLP的核心问题之一,对问答、翻译、检索等任务具有非常重要的意义。重复问题检测是一个常见的文本挖掘任务,在很多实际问答社区都有相应的应用。重复问题检测可以方便进行问题的答案聚合,以及问题答案推荐,自动QA等。由于英文单词的多样性和灵活性,本赛题需要选手构建一个重复问题识别算法。原创 2022-12-31 15:37:39 · 1582 阅读 · 1 评论 -
基于PyTorch+LSTM的交通客流预测(时间序列分析)
将深度学习与交通客流时间分布特征相结合,能够有效地揭示轨道交通客流量的变化趋势。本文将使用LSTM进行较为客观的客流量预测数据统计,并通过深度学习将预测结果应用于实践之中对轨道交通发车频次进行合理优化。原创 2022-12-31 15:37:51 · 4516 阅读 · 0 评论 -
基于BiLSTM-Attention实现天气变量预测风速
风速预报是预警灾害性天气的一项重要任务,本项目使用循环神经网络BiLSTM-Attention训练一个网络模型,来预测在给定指定日期的天气变量来预测对应的风速情况。原创 2022-12-31 15:38:47 · 3485 阅读 · 4 评论 -
基于PyTorch+LSTM实现共享单车需求预测
自行车共享系统是一种租赁自行车的方式,通过遍布城市的自助服务站网络,获得会员资格、租赁和归还自行车的过程是自动化的。使用这些系统,人们可以从一个地方租用自行车,并根据需要将其归还到不同的地方。目前,全世界有超过500个共享单车项目。原创 2022-12-31 15:39:01 · 2808 阅读 · 1 评论 -
基于PyTorch+TextCNN实现英文长文本诗歌文本分类
本项目是使用由Yoon Kim提出的Convolutional Naural Networks for Sentence Classification一文中提出的TextCNN模型进行长文本诗歌分类,针对数据为英语诗歌文本,可以判断出语料的诗歌类别,实现思路就是针对诗歌数据进行多分类,也就是简单的指出诗歌是哪个类别的。原创 2022-12-31 15:38:40 · 1222 阅读 · 3 评论 -
基于PyTorch+Conv-GRNN & LSTM-GRNN实现中文情感分类任务
本项目是使用Document Modeling with Gated Recurrent Neural Network for Sentiment Classification一文中提出的Conv-GRNN & LSTM-GRNN模型进行文本情感分析,针对数据为购物评价信息,可以判断出语料所含情感的积极性,实现思路就是针对评价进行二分类,也就是简单的指出评价是正面的还是负面的。原创 2022-12-31 15:39:27 · 1250 阅读 · 0 评论 -
基于PyTorch+HAN实现中文情感分类任务
本项目是使用Hierarchical Attention Networks for Document Classification一文中提出的HAN模型进行文本情感分析,针对数据为购物评价信息,可以判断出语料所含情感的积极性,实现思路就是针对评价进行二分类,也就是简单的指出评价是正面的还是负面的。原创 2022-12-31 15:39:39 · 1555 阅读 · 10 评论 -
基于GPT2实现中文新闻文本分类任务
论文最大的模型GPT-2是一个1.5B的参数Transformer,在zero-shot设置下,在8个测试语言建模数据集中的7个上实现了最先进的结果,但仍然低于WebText。模型中的样本反映了这些改进,并包含连贯的文本段落。这些发现为构建语言处理系统提供了一条有希望的途径,该系统可以从自然发生的演示中学习执行任务。原创 2022-12-31 15:39:12 · 2840 阅读 · 1 评论 -
基于Google的预训练模型XLNet实现电商情感多分类任务
XLNet 模型是在 2019 年 10 年由 CMU 和 Google 大脑团队在 NIPS 顶会上联合发布,是 Bert 模型不到一年之后又一刷爆榜单的模型。XLNet 一共在 20 个 NLP 任务上超越了 Bert,并且其中 18 个任务在当时取得了 SOTA 的成绩。原创 2022-12-31 15:39:21 · 1166 阅读 · 7 评论 -
基于CharCNN实现中文情感分类任务
本项目是使用Character-level Convolutional Networks for Text Classification一文中提出的CharCNN模型进行文本情感分析,针对数据为购物评价信息,可以判断出语料所含情感的积极性,实现思路就是针对评价进行二分类,也就是简单的指出评价是正面的还是负面的。原创 2022-12-27 08:52:45 · 1073 阅读 · 0 评论 -
基于BiLSTM-Attention实现中文文本分类任务
这篇论文发表于ACL2016,和《Relation Classification via Convolutional Deep Neural Network》一样是关系分类领域经典的论文之一,引入了attention+BiLSTM的结构进行关系分类任务,同时不使用位置向量,而是通过Position Indicators来引入实体信息,在不使用任何Lexical-Feature的情况下,可以到达较高的分类准确率。原创 2022-12-31 15:39:31 · 2324 阅读 · 1 评论 -
基于TextRCNN实现中文短文本分类任务
在TextCNN网络中,网络结构是 卷积层+池化层 的形式,卷积层用于提取n-gram类型的特征,在RCNN中,卷积层的特征提取的功能被RNN替代,因此整体结构变为了RNN+池化层,所以叫RCNN。原创 2022-12-31 00:00:00 · 1224 阅读 · 0 评论 -
基于TextRNN实现情感短文本分类任务
文本分类任务中,CNN可以用来提取句子中类似N-Gram的关键信息,适合短句子文本。TextRNN擅长捕获更长的序列信息。具体到文本分类任务中,从某种意义上可以理解为可以捕获变长、单向的N-Gram信息(Bi-LSTM可以是双向)。原创 2022-12-30 00:00:00 · 1364 阅读 · 0 评论 -
基于飞浆ERNIE3.0百亿级大模型实现中文短文本分类任务
ERNIE 3.0 (Large-Scale Knowledge Enhanced Pre-Training for Language Understanding And Generation) 是基于知识增强的多范式统一预训练框架。在 ERNIE 3.0 中,自回归和自编码网络被创新型地融合在一起进行预训练,其中自编码网络采用 ERNIE 2.0 的多任务学习增量式构建预训练任务,持续的进行语义理解学习。 通过新增的实体预测、句子因果关系判断、文章句子结构重建等语义任务。同时,自编码网络创新性地增加了知识原创 2022-12-29 00:00:00 · 1766 阅读 · 0 评论 -
基于ERNIE2.0文心大模型实现中文短文本分类任务
文心·NLP大模型,面向语言理解、语言生成等NLP场景,具备超强语言理解能力以及对话生成、文学创作等能力。创新性地将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的新知识,实现模型效果不断进化。原创 2022-12-28 00:00:00 · 1904 阅读 · 0 评论 -
基于Pytorch+Bert实现电商情感多分类任务
BERT是2018年10月由Google AI研究院提出的一种预训练模型。BERT的全称是Bidirectional Encoder Representation from Transformers。BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类,并且在11种不同NLP测试中创出SOTA表现,包括将GLUE基准推高至80.4% (绝对改进7.6%),MultiNLI准确度达到86.7% (绝对改进5.6%),成为NLP发展史上的里程碑式的模型成就。原创 2022-12-26 14:58:54 · 2272 阅读 · 3 评论 -
基于DPCNN实现电商情感分析任务
下载链接项目中使用的模型是DPCNN,在模型中我们定义了三个组件,分别是embedding层,卷积层和全连接层。Embedding层:将每个词生成对应的嵌入向量,就是利用一个连续型向量来表示每个词卷积层:提取语句中的语义信息Linear层:将结果映射成2大小用于二分类,即正反面的概率。原创 2022-12-26 05:00:00 · 1120 阅读 · 5 评论 -
基于FastText实现情感二分类任务
下载链接项目中使用的模型是FastText,在模型中我们定义了两个组件,分别是embedding层和全连接层。Embedding层:将每个词生成对应的嵌入向量,就是利用一个连续型向量来表示每个词Linear层:将结果映射成2大小用于二分类,即正反面的概率。原创 2022-12-25 05:00:00 · 1462 阅读 · 5 评论 -
基于TextCNN实现情感分析任务
下载链接项目中使用的模型是TextCNN,在模型中我们定义了三个组件,分别是embedding层,卷积层和全连接层。Embedding层:将每个词生成对应的嵌入向量,就是利用一个连续型向量来表示每个词卷积层:提取语句中的语义信息Linear层:将结果映射成2大小用于二分类,即正反面的概率。原创 2022-12-23 20:04:25 · 2140 阅读 · 1 评论 -
基于Embedding + LSTM + CNN进行二手车价格预测
赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取15万条作为训练集,5万条作为测试集A,5万条作为测试集B,同时会对name、model、brand和regionCode等信息进行脱敏。数据集下载地址本项目尝试的模型是CNN-LSTM 模型,我们的CNN-LSTM 模型结合由初始的一维卷积层组成,这将接收经过嵌入以及连续性特征作为输入。原创 2022-12-22 13:16:31 · 2592 阅读 · 2 评论 -
基于vgg19的梵高图像风格迁移
数据说明:蛋糕图像及其多目标类的集合Filename (str: uniquevalues) - JPG图像文件名奶油(str:[‘yes’, ‘no’] - yes表示奶油存在,no表示不存在水果(str:[‘yes’, ‘no’] - yes表示水果存在,no表示不存在spille_toppings (str:[‘yes’, ‘no’] - yes表示有洒上的浇头,如糖果、彩虹球,no表示没有结构简洁。原创 2022-11-14 18:07:33 · 4171 阅读 · 9 评论 -
基于GAN(生成对抗网络)生成动漫人物图像
这是一个由63632个高质量动画人脸组成的数据集,从www.getchu.com中抓取,然后使用https://github.com/nagadomi/lbpcascade_animeface中的动画人脸检测算法进行裁剪。图像大小从90 * 90 ~ 120 * 120不等(您可以在使用它们之前简单地缩放它们)。与其他广泛使用的数据集(例如danbooru数据集,它实际上相当混乱)相比,该数据集包含高质量的动漫角色图像,具有干净的背景和丰富的颜色。然而,数据集中仍然存在少数异常值数据集下载链接。原创 2022-11-09 05:00:00 · 4944 阅读 · 3 评论 -
基于CNN卷积神经网络实现手势识别
这个数据集包含14个不同的人所做的手势,每个人都做10个不同的手势,每个手势重复10次,总共有1400个手势。Kinect和Leap动作的数据已经被获取,设置如图所示。还提供了Kinect的校准参数。Leap数据包含在Leap SDK提供的所有参数中。数据集下载地址1998年Yann LeCun在论文“Gradient-Based Learning Applied to Document Recognition”中提出了LeNet-5,并在字母识别中取得了很好的效果。原创 2022-10-28 16:23:43 · 6415 阅读 · 12 评论 -
基于Pytorch的中文问题相似度实战
本项目使用的是科大讯飞中文问题相似度挑战赛数据集数据集下载链接。输入层:输入层负责读入两个语句信息嵌入层:使用embedding将句子进行嵌入表达表示层:采用lstm获取语义信息,使用最后一个隐层进行表达语义信息匹配层:使用余弦相似度计算两个表示层向量的相似度得分层:使用全连接层将相似度向量映射成概率。原创 2022-11-06 05:00:00 · 1766 阅读 · 2 评论