深度优先遍历算法的非递归实现

 深度优先遍历算法的非递归实现需要了解深度优先遍历的执行过程,设计一个栈来模拟递归实现中系统设置的工作栈,算法的伪代码描述为:

 

假设图采用邻接矩阵作为存储结构,具体算法如下:

 

 

  1.  深度优先遍历算法的非递归实现需要了解深度优先遍历的执行过程,设计一个栈来模拟递归实现中系统设置的工作栈,算法的伪代码描述为:   
  2.   
  3.   
  4.   假设图采用邻接矩阵作为存储结构,具体算法如下:  
  5.   
  6.   
  7. <PRE class=cpp name="code">#include<iostream>  
  8. #include <queue>   
  9. using namespace std;  
  10. #define  MAX_NODE 12   
  11. bool visited[MAX_NODE] ;  
  12. int stack[ MAX_NODE] ;  
  13. queue<int> q;  
  14. int Matric[MAX_NODE][MAX_NODE] =  
  15. {  
  16.     {-1,1,1,0,0,0,0,0,0,0,0,0},  
  17.     {1,-1,1,0,1,1,0,0,0,0,0,0},  
  18.     {1,1,-1,1,0,0,0,0,0,0,0,0},  
  19.     {0,0,1,-1,1,0,0,0,0,0,1,1},  
  20.     {0,1,0,1,-1,0,0,0,0,0,0,0},  
  21.     {0,1,0,0,0,-1,0,0,0,0,1,0},  
  22.     {0,0,0,0,0,0,-1,1,1,1,0,0},  
  23.     {0,0,0,0,0,0,1,-1,0,0,0,0},  
  24.     {0,0,0,0,0,0,1,0,-1,1,1,0},  
  25.     {0,0,0,0,0,0,1,0,1,-1,0,1},  
  26.     {0,0,0,1,0,1,0,0,1,0,-1,0},  
  27.     {0,0,0,1,0,0,0,0,0,1,0,-1},   
  28. };  
  29. void DFS( int v)  
  30. {  
  31.     cout << " v"<< v ;  
  32.     int top = -1 ;  
  33.     visited[v] = true ;  
  34.     stack[++top] = v ;  
  35.     while ( top != -1)  
  36.     {  
  37.         v = stack[top] ;  
  38.         for (int i = 0 ; i < MAX_NODE ; i++)  
  39.         {  
  40.             if (Matric[v][i] == 1 &&!visited[i])  
  41.             {  
  42.                 cout << " v" << i ;  
  43.                 visited[i] = true ;  
  44.                 stack[ ++top ] = i ;  
  45.                 break ;  
  46.             }  
  47.         }  
  48.         if( i == MAX_NODE)  
  49.         {  
  50.             top -- ;  
  51.         }  
  52.     }  
  53.       
  54. }  
  55.   
  56.   
  57. void BFS( int v)  
  58. {  
  59.     int node = 0;  
  60.     q.push(v);  
  61.     visited[v] = true;  
  62.     while( !q.empty())  
  63.     {         
  64.         node = q.front();  
  65.         for ( int i = 0; i < MAX_NODE; i++ )  
  66.         {  
  67.             if ( Matric[node][i] == 1 && !visited[i])  
  68.             {  
  69.                 visited[i] = true;  
  70.                 q.push(i);  
  71.             }  
  72.         }  
  73.         cout <<" v" << node;  
  74.         q.pop();  
  75.     }  
  76.       
  77.       
  78. }  
  79. void Init()  
  80. {  
  81.       
  82.     int i = 0;  
  83.     for ( i = 0; i < MAX_NODE; i++)  
  84.     {  
  85.         visited[i] = false;  
  86.     }  
  87. }  
  88. int main()  
  89. {  
  90.     Init();  
  91.     DFS( 1 ) ;  
  92.     cout << endl ;  
  93.     Init();  
  94.     BFS( 1 );  
  95.     cout << endl;  
  96.     Init();  
  97.     DFS( 6 );  
  98.     cout <<endl;  
  99.     return 0 ;  
  100. }</PRE>  
  101. <PRE></PRE>  
  102. <PRE class=cpp name="code"></PRE>  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值