图的深度、广度优先遍历算法(含无向图、有向图的构造)


算法逻辑可能并不严谨,欢迎各位大佬批评指正!


一、非递归实现深度优先遍历

1、算法思想

(1)算法思想:

  • 首先检查起始顶点的索引是否有效和图是否已经建立。
  • 使用栈来实现深度优先搜索,首先将起始顶点入栈,并将起始顶点标记为已访问。
  • 循环直到栈为空,每次取出栈顶顶点,打印并访问它的邻接顶点,并将未访问的邻接顶点入栈并标记为已访问。

(2)时间复杂度: O(V + E)
(3)空间复杂度: O(V),其中V是顶点数,E是边数。

2、算法流程图

在这里插入图片描述

3、算法

//深度优先
void DFS(int start) {
   
    if (start < 0 || start >= numVertices) {
   
        cout << "起始顶点不在图形中" << endl;
        return;
    }

    if (checkGraphBuilt()) {
   
        vector<bool> visited(numVertices, false);
        stack<int> s;
        s.push(start);
        visited[start] = true;

        while (!s.empty()) {
   
            int current = s.top();
            s.pop();

            if (current < 0 || current >= numVertices) {
   
                continue;
            }

            printNode(current);

            for (auto node : adjList[current]) {
   
                if (!visited[node.dest]) {
   
                    s.push(node.dest);
                    visited[node.dest] = true;
                }
            }
        }
        cout << endl;
    }
}

二、广度优先遍历

1、算法思想

(1)算法思想:

  • 首先检查起始顶点的索引是否有效和图是否已经建立。
  • 使用队列来实现广度优先搜索,首先将起始顶点入队,并将起始顶点标记为已访问。
  • 循环直到队列为空,每次取出队首顶点,打印并访问它的邻接顶点,并将未访问的邻接顶点入队并标记为已访问。

(2)时间复杂度: O(V + E)
(3)空间复杂度: O(V),其中V是顶点数,E是边数。

2、算法流程图

在这里插入图片描述

3、算法

//广度优先
void BFS(int start) {
   
    if (start < 0 || start >= numVertices) {
   
        cout << "起始顶点不在图形中" << endl;
        return;
    }

    if (checkGraphBuilt()) {
   
        vector<bool> visited(numVertices, false);
        queue<int> q;
        q.push(start);
        visited[start] = true;

        while (!q.empty()) {
   
            int current = q.front();
            q.pop();

            if (current < 0 || current >= numVertices) {
   
                continue;
            }

            printNode(current);

            for (auto node : adjList[current]) {
   
                if (!visited[node.dest]) {
   
                    q.push(node.dest);
                    visited[node.dest] = true;
                }
            }
        }
        cout << endl;
    }
}

三、附检测算法完整程序(含无向图、有向图的构造)

1、操作说明

  1. 根据菜单指示输入要进行的操作相应的数字

  2. 输入数字1将会输出已经构造好的无向网。

  3. 输入数字2将进入键盘输入有向图的操作,输入顶点个数(规定顶点是从0开始的数字,如:顶点个数为4,则顶点分别是0、1、2、3),输入边的起点和终点。
    在这里插入图片描述

  4. 输入数字3输出有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值