regionprops是用来度量图像中不同区域属性的函数

regionprops是用来度量图像中不同区域属性的函数。

http://www.zdh1909.com/html/matlab/16292.html

表示形式是:stats=regionprops(L,properties)

测量标注矩阵L中每一个标注区域的一系列属性。L中不同的正整数元素对应不同的区域,例如:L中等于整数1的元素对应区域1;L中等于整数2的元素对应区域2;以此类推。返回值STATS是一个长度为max(L(:))的结构数组,结构数组的相应域定义了每一个区域相应属性下的度量。 properties 可以是由逗号分割的字符串列表、饱含字符串的单元数组、单个字符串 'all' 或者 'basic'。如果 properties 等于字符串 'all',则所有下述字串列表中的度量数据都将被计算,如果 properties 没有指定或者等于 'basic',则属性: 'Area', 'Centroid', 和 'BoundingBox' 将被计算。下面的列表就是所有有效的属性字符串,它们大小写敏感并且可以缩写。

'Area'

是标量,计算出在图像各个区域中像素总个数。注意:这个数值可能与由函数 bwarea 计算的值有轻微的不同。对于这样一个数值,我们可以使用它除以整个图像区域的像素个数,作为模式识别的候选特征。

'BoundingBox'

是1行ndims(L)*2列的向量,即包含相应区域的最小矩形。BoundingBox 形式为 [ul_corner width],这里 ul_corner 以 [x y z ...] 的坐标形式给出边界盒子的左上角、boxwidth 以 [x_width y_width ...] 形式指出边界盒子沿着每个维数方向的长度。

'Centroid'

是1行ndims(L)列的向量,给出每个区域的质心(重心)。 注意:Centroid 的第一个元素是重心水平坐标(x坐标)、第二个元素是重心垂直坐标(y坐标)。Centroid 所有其它元素则按照维顺序排列。

'MajorAxisLength'

是标量,与区域具有相同标准二阶中心矩的椭圆的长轴长度(像素意义下)。本属性只支持二维标注矩阵。

'MinorAxisLength'

是标量,与区域具有相同标准二阶中心矩的椭圆的短轴长度(像素意义下)。本属性只支持二维标注矩阵。

'Eccentricity'

是标量,与区域具有相同标准二阶中心矩的椭圆的离心率(可作为特征)。本属性只支持二维标注矩阵。

'Orientation'

是标量,与区域具有相同标准二阶中心矩的椭圆的长轴与x轴的交角(度)。本属性只支持二维标注矩阵。

'Image'

二值图像,与某区域具有相同大小的逻辑矩阵。你可以用这个属性直接将每个子区域提取出来,然后再作相应的处理!

'FilledImage'

与上相同,唯一区别是这是个做了填充的逻辑矩阵!本例中和上面的没有区别,只有区域有空洞时才有明显差别。

'FilledArea'

是标量,填充区域图像中的 on 像素个数。

'ConvexHull'

是p行2列的矩阵,包含某区域的最小凸多边形。此矩阵的每一行存储此多边形一个顶点的xy坐标。此属性只支持2维标注矩阵。

'ConvexArea'

是标量,填充区域凸多边形图像中的 on 像素个数。

'EulerNumber'

是标量,几何拓扑中的一个拓扑不变量--欧拉数,等于图像中目标个数减去这些目标中空洞的个数。 此属性只支持2维标注矩阵。本例中的欧拉数均为1。

'Extrema'

8行2列矩阵,八方向区域极值点。矩阵每行存储这些点的xy坐标,向量格式为 [top-left top-right right-top right-bottom bottom-right bottom-left left-bottom left-top]。此属性只支持2维标注矩阵。

'EquivDiameter'

是标量,等价直径:与区域具有相同面积的圆的直径。计算公式为:sqrt(4*Area/pi)。. 此属性只支持2维标注矩阵。本例标准化后的12区域直径向量为:

'Solidity'

是标量,同时在区域和其最小凸多边形中的像素比例。计算公式为:Area/ConvexArea,这也是个仿射特征,实际上反映出区域的固靠性程度。此属性只支持2维标注矩阵。本例12区域凸元素比例向量为:

'Extent'

是标量,同时在区域和其最小边界矩形中的像素比例。计算公式为:Area除以边界矩形面积,这也是个仿射特征,实际上反映出区域的扩展范围程度。此属性只支持2维标注矩阵。不再给出计算结果!!

'PixelIdxList'

p元向量,存储区域像素的索引下标。

'PixelList'

p行ndims(L)列矩阵,存储上述索引对应的像素坐标。

注意:

输入的标注矩阵L可以有任意的数值类型。

使用逗号分割列表语法

当你基于regionprops函数的输出作算法设计时,使用逗号分割列表语法就凸显出其非常的价值。例如:对于一个存储标量的属性,可以利用此语法创建一个包含图像中不同区域内此属性值的向量。例如以下两句是等价的:

stats(1).Area, stats(2).Area, ..., stats(end).Area

stats.Area因此,可以使用下面的方法创建相应的向量:

regionprops(L,'Area');

allArea = [stats.Area];

allArea 就是一个与结构数组 stats 具备相同长度的向量。

基于特定原则的区域选择

当你要基于特定准则条件选择某个区域时,将函数 ismember 和 regionprops 联合使用是很有用处的。例如:创建一个只包含面积大于80的二值图像,用以下命令

idx = find([stats.Area] > 80);

BW2 = ismember(L,idx);

计算性能考虑

大多数的属性测量计算时间都非常地少,除了那些非常依赖于图像L中区域个数和像素个数的属性。例如:

'ConvexHull' 'ConvexImage' 'ConvexArea' 'FilledImage'

另外建议一次性计算所有属性值,因为分开计算和一起计算时间相差无几!

使用二值图像工作

在调用regionprops之前必须将二值图像转变为标注矩阵。两个函数可以做到:

L = bwlabel(BW); L = double(BW);注意:虽然这两个函数从同一二值图像产生不同的标注矩阵,但是它们是等效的!例如:给出如下的二值矩阵BW,

1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 1

bwlabel 创建一个包含两个分别由整数1和2标注的连续区域标注矩阵

mylabel = bwlabel(BW)

mylabel =

1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 2

0 0 0 0 2 2

double 创建一个包含一个由整数1标注的不连续区域标注矩阵。

mylabel2 = double(BW)

mylabel2 =

1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 1

regionprops 并不负责自动转换二值图像数据类型,而是由你自己决定使用何种数据转换方法来存储自己想要的数据。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值