Your task is to calculate ab mod 1337 where a is a positive integer and b is an extremely large positive integer given in the form of an array.
Example1:
a = 2 b = [3] Result: 8
Example2:
a = 2 b = [1,0] Result: 1024
One knowledge: ab % k = (a%k)(b%k)%k
Since the power here is an array, we'd better handle it digit by digit.
One observation:
a^1234567 % k = (a^1234560 % k) * (a^7 % k) % k = (((a^123456) % k) ^ 10 ) % k * a^7 % k
Looks complicated? Let me put it other way:
Suppose f(a, b) calculates a^b % k; Then translate above formula to using f :
f(a,1234567) = f(a, 1234560) * f(a, 7) % k = f(f(a, 123456),10) * f(a,7)%k;
Implementation of this idea:
class Solution {
const int base = 1337;
int powmod(int a, int k) //a^k mod 1337 where 0 <= k <= 10
{
a %= base;
int result = 1;
for (int i = 0; i < k; ++i)
result = (result * a) % base;
return result;
}
public:
int superPow(int a, vector<int>& b) {
if (b.empty()) return 1;
int last_digit = b.back();
b.pop_back();
return powmod(superPow(a, b), 10) * powmod(a, last_digit) % base;
}
};