关联规则的理解

数据挖掘主要就是对强规则的挖掘。通过设置最小支持度和最小置信度可以了解某些数据之间相关联的强度。强规则X→Y对应的项集(XUY)必定是频繁集。

一般把规关联规则划分为两部分问题:根据最小支持度找出事务集的所有频繁项集,之后就可以根据频繁项集和最小置信度来挖掘出关联规则。

举例: 商品事务如下

1   购买A,B,C

2   购买A,C

3   购买A,D

4   购买B,E,F

 

分析:I ={A,B,C,D,E,F} D1={A,B,C}    D2={A,C}  D3={A,D}   D4={B,E,F}

其中4个事务中包含 AC两个元素的事务有D1和D2

所以A->C 和C->A的最小支持度都是百分之50

A->C的最小置信度=事务(包含A和C)/事务(包含A)=2/3

C->A的最小置信度=事务(包含A和C)/事务(包含C)=100%

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值