CTR预估模型浅谈

本文探讨CTR预估模型的构建过程,包括从Hive中获取离线数据进行join、norm、binarize和train四个步骤。重点讨论了LR模型中的交叉特征、正则化和二值化的重要性,并指出在线工程实现模型加载的挑战。
摘要由CSDN通过智能技术生成

导言:一般是从离线数据中学习得到,离线数据是保存在Hive中的,通过机器学习算法将Hive中的数据进行分析,得到一个pCtr模型;

对于在线工程而言,实现一个通过配置把离线模型加载进去的在线部分,的确没什么工作量,几行代码;但,要实现一个真正强的在线部分,都要几周时间完成;


一、离线部分

粗糙版就是python单机就可以

步骤:joinnormbinarizetrain


join:多个数据源的数据通过key进行jion,得到数据

NormBinaries是对数据进行变换;LR算法决定࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值