汉诺塔问题是使用递归解决问题的经典范例。
汉诺(Hanoi)塔问题:古代有一个梵塔,塔内有三个座A、B、C,A座上有64个盘子,盘子大小不等,大的在下,小的在上(如图)。有一个和尚想把这64个盘子从A座移到B座,但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座,要求打印移动的步骤。如果只有一个盘子,则不需要利用B座,直接将盘子从A移动到C。
如果有2个盘子,可以先将盘子1上的盘子2移动到B;将盘子1移动到c;将盘子2移动到c。这说明了:可以借助B将2个盘子从A移动到C,当然,也可以借助C将2个盘子从A移动到B。
如果有3个盘子,那么根据2个盘子的结论,可以借助c将盘子1上的两个盘子从A移动到B;将盘子1从A移动到C,A变成空座;借助A座,将B上的两个盘子移动到C。这说明:可以借助一个空座,将3个盘子从一个座移动到另一个。
如果有4个盘子,那么首先借助空座C,将盘子1上的三个盘子从A移动到B;将盘子1移动到C,A变成空座;借助空座A,将B座上的三个盘子移动到C。
public class HannoiTower {
private static int step = 1;
/**
* @Title: main
* @Description: TODO
* @param args
*/
public static void main(String[] args) {
HannoiTower.toTower(5, 'A', 'B', 'C');
}
/**
*
* @Title: toTower
* @Description: TODO
* @param topNum
* 移动的盘子数
* @param from
* 起始塔座
* @param inter
* 中间塔座
* @param to
* 目标塔座
*/
public static void toTower(int topNum, char from, char inter, char to) {
if (topNum == 1) {
System.out.println(step++ +",盘子1,从" + from + "塔座移到" + to + "塔座");
} else {
toTower(topNum - 1, from, to, inter);
System.out.println(step++ +",盘子" + topNum + ",从" + from + "塔座移到" + to + "塔座");
toTower(topNum - 1, inter, from, to);
}
}
}