汉诺塔用递归算法

汉诺塔问题是使用递归解决问题的经典范例。

  汉诺(Hanoi)塔问题:古代有一个梵塔,塔内有三个座A、B、C,A座上有64个盘子,盘子大小不等,大的在下,小的在上(如图)。有一个和尚想把这64个盘子从A座移到B座,但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座,要求打印移动的步骤。如果只有一个盘子,则不需要利用B座,直接将盘子从A移动到C。

如果有2个盘子,可以先将盘子1上的盘子2移动到B;将盘子1移动到c;将盘子2移动到c。这说明了:可以借助B将2个盘子从A移动到C,当然,也可以借助C将2个盘子从A移动到B。
如果有3个盘子,那么根据2个盘子的结论,可以借助c将盘子1上的两个盘子从A移动到B;将盘子1从A移动到C,A变成空座;借助A座,将B上的两个盘子移动到C。这说明:可以借助一个空座,将3个盘子从一个座移动到另一个。
如果有4个盘子,那么首先借助空座C,将盘子1上的三个盘子从A移动到B;将盘子1移动到C,A变成空座;借助空座A,将B座上的三个盘子移动到C。

public class HannoiTower {


    private static int step = 1;

    /**   
     * @Title: main   
     * @Description: TODO  
     * @param args
     */
    public static void main(String[] args) {
        HannoiTower.toTower(5, 'A', 'B', 'C');
    }

    /**
     * 
     * @Title: toTower
     * @Description: TODO
     * @param topNum
     *            移动的盘子数
     * @param from
     *            起始塔座
     * @param inter
     *            中间塔座
     * @param to
     *            目标塔座
     */
    public static void toTower(int topNum, char from, char inter, char to) {
        if (topNum == 1) {
            System.out.println(step++ +",盘子1,从" + from + "塔座移到" + to + "塔座");
        } else {
            toTower(topNum - 1, from, to, inter);
            System.out.println(step++ +",盘子" + topNum + ",从" + from + "塔座移到" + to + "塔座");
            toTower(topNum - 1, inter, from, to);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值