嵌入式人工智能 实习笔记
面部情绪识别
Rasberrypi
PaddlePaddle
Python
神经网络
ShuchongLI
索邦大学工程师在读
展开
-
2021-07-24 AI studio 面部情绪识别 部署 准备paddleLite和opt工具
准备paddleLite和opt工具,在notebook中使用opt工具得到nb文件!pip install paddlelite==2.9!paddle_lite_opt --model_file=output_model.pdmodel --param_file=output_model.pdiparams --optimize_out=faceLooking in indexes: https://mirror.baidu.com/pypi/simple/Requirement alrea原创 2021-07-24 10:51:56 · 619 阅读 · 1 评论 -
2021-07-19 AI studio 面部情绪识别 预测
预测predict_dataset = FaceDataset(mode='test')print('测试数据集样本量:{}'.format(len(predict_dataset))) from paddle.static import InputSpec # 模型封装model_2 = paddle.Model(network, inputs=[InputSpec(shape=[-1] + get('image_shape'), dtype='float32', name='image')原创 2021-07-19 23:04:31 · 243 阅读 · 0 评论 -
2021-07-18 AI studio 面部情绪识别 搭建网络 训练模型
搭建网络network = paddle.nn.Sequential( paddle.nn.Conv2D(3, 16 ,3,stride = 3,padding = "same"), paddle.nn.ReLU(), paddle.nn.MaxPool2D(2), paddle.nn.Conv2D(16, 32, 3,stride = 3,padding = "same"), paddle.nn.ReLU(), paddle.nn.MaxPool2D(2原创 2021-07-18 21:57:46 · 419 阅读 · 0 评论 -
2021-07-17 AI studio 面部情绪识别 数据的预处理
数据的预处理import paddle.vision.transforms as T__all__ = ['FaceDataset']# 定义图像的大小image_shape = get('image_shape') #事先image_shape添加在之前的config_label文件的CONFIG下IMAGE_SIZE = (image_shape[1], image_shape[2])print(IMAGE_SIZE)class FaceDataset(paddle.io.Datase原创 2021-07-17 16:39:24 · 256 阅读 · 0 评论 -
2021-07-16 AI studio 面部情绪识别 给数据打标签
给数据打标签第一步 整理数据第二步 配置标签第三步 遍历文件夹,给每个图像数据打上标签第一步 整理数据将数据分类好存在train文件夹下不知道为啥,运行完后这些文件夹的排列顺序会变化。此外,AI Studio上貌似不能移动文件夹,但是可以解压文件到指定目录,所以我只好将数据集重新解压到train文件夹下。第二步 配置标签写个python文件,命名为config_label__all__ = ['CONFIG', 'get']CONFIG = { 'LABEL_MAP': [原创 2021-07-16 11:47:42 · 264 阅读 · 0 评论 -
2021-07-14 AI studio 面部情绪识别 数据集导入
着手准备 面部情绪识别系统的模型训练数据集导入第一步:收集数据,建立数据集,里面包含了不同情绪的人脸图像第二步:压缩成zip文件第三步:在平台解压缩第一步:收集数据,建立数据集,里面包含了不同情绪的人脸图像比如生气,在文件夹Anger当中第二步:压缩成zip文件需要将数据集压缩成zip文件才能在建立项目的时候上传将所有文件夹打包放在image文件夹中并压缩第三步:在平台解压缩上传完数据集后我们可以在data目录里找到在终端输入命令将文件解压unzip -oq /home/aist原创 2021-07-14 21:50:16 · 1319 阅读 · 1 评论 -
2021-07-13学习记录 Mnist手写数字识别极简方案
开发平台:AI Studio深度学习框架:paddleMnist手写数字识别极简方案开发流程第一步:新建项目第二步:在notebook中书写代码第一个cell:加载paddle和相关库第二个cell:设置数据读取器,API自动读取MNIST数据训练集第三个cell:读取任意一个数据内容,观察打印结果。第四个cell:以类的方式组建手写数字识别的网络第五个cell:训练配置第六个cell:图像归一化第七个cell:训练过程第八个cell:上传本地图片第九个cell:测试过程总代码:cell1cell2ce原创 2021-07-13 21:53:56 · 170 阅读 · 1 评论 -
2021-07-12学习记录 深度学习训练模型python代码分析3.0
训练的模型应用于口罩识别系统今天要分析的一段代码:主函数if __name__ == '__main__': model = build_model((64, 64, 3),2) adam = Adam(lr=0.0005) model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy']) datagen = ImageDataGenerator( r原创 2021-07-12 23:41:11 · 406 阅读 · 3 评论 -
2021-07-11学习记录 深度学习训练模型python代码分析2.0
训练的模型应用于口罩识别系统今天要分析的一段代码:卷积神经网络模型def build_model(inputshape,shape_count): img_in = Input(shape=inputshape, name='img_in') X = img_in X = Convolution2D(8, 3, padding='same', activation='relu', name='conv1')(X) X = MaxPooling2D(pool_size=2原创 2021-07-11 17:35:49 · 283 阅读 · 1 评论 -
2021-07-10学习记录 深度学习训练模型python代码分析1.0
训练的模型应用于口罩识别系统今天要分析的一段代码:引入的库和函数import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'import numpy as npimport randomimport tensorflow as tffrom PIL import Imagefrom keras import layersfrom tensorflow.keras.layers import Dense, Convolution2D, MaxPoo原创 2021-07-10 23:02:43 · 291 阅读 · 3 评论 -
2021-07-09
7.9学习记录今天走了一遍训练流程,中途遇到了各种bug,比如tensorflow和keras的版本不兼容的问题,最终安装了tensorflow1.14和keras2.2.5本,成功运行。这是搭建的卷积神经网络def build_model(inputshape,shape_count): img_in = Input(shape=inputshape, name='img_in') X = img_in X = Convolution2D(8, 3, padding='sa原创 2021-07-09 23:46:25 · 103 阅读 · 4 评论 -
2021-07-09
2021.7.8学习记录1.系统开发需要的python库numpyPIL —— 图像处理库opencv —— 接口matplotlib2.对于同样的数据集和目标CNN比Matrix的输出结果精度更高3.了解了LeNet和ALexNet神经网络结构LeNet:经典入门级数字识别,梦开始的地方AlexNet:更为复杂,两个gpu并行工作4.same模式和valid模式same:不改变图像尺寸valid:根据卷积核的尺寸,改变图像尺寸感悟嵌入式的代码的开发需原创 2021-07-09 10:41:20 · 85 阅读 · 1 评论 -
2021-07-07
最近的嵌入式人工智能学习体会通过网上课程学习:1.了解了深度学习模型搭建模型——损失函数——参数学习2.了解了全神经网络和卷积神经网络的概念神经元的全连接和部分连接3.了解了卷积神经网络相对于全神经网络的优势1.结构灵活2.所需要训练的参数少(局部链接,权重共享,下采样)4.了解了卷积神经网络的结构卷积层imput image * kernel = feature map一个卷积核提取一个特征多个卷积核提取多个特征对多个fmap继续操作:多通道卷积(同样分为一个卷积核原创 2021-07-08 11:41:26 · 96 阅读 · 0 评论