提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
Innodb相关记录
Innodb
InnoDB存储引擎是第一个完整支持ACID事务的MySQL存储引擎
提示:以下是本篇文章正文内容,下面案例可供参考
一、InnoDB体系架构
InnoDB存储引擎体系架构
InnoDB 存储引擎有多个内存块,可以认为这些内存块组成了一个大的内存池,负责如下工作:
- 维护所有进程/线程需要访问的多个内部数据结构。
- 缓存磁盘上的数据,方便快速地读取,同时在对磁盘文件的数据修改之前在这里缓存。
- 重做日志(redo log)缓冲。
后台线程
后台线程主要作用是负责刷新内存池中的数据,保证缓冲池中的内存缓存的是最近的数据。此外将已修改的数据文件刷新到磁盘文件,同时保证在数据库发生异常的情况下InnoDB 能恢复到正常运行状态。
InnoDB 存储引擎是多线程模型,因此有多个不同的后台线程,负责处理不同的任务。
内存
1.缓冲池
缓冲池可以当作一个很大的内存区域,用于存放各种类型的页。
InnoDB存储引擎是基于磁盘存储的,并将其中的记录按照页的方式进行管理。因此也称为基于磁盘的数据库系统。CPU和磁盘速度差别太大,因此基于磁盘的数据库系统通常使用缓冲池技术来提高数据库的整体性能。
操作页的操作都是在缓冲池中完成的。
InnoDB 存储引擎的缓冲池的配置是通过参数innodb_buffer_pool_size来设置。
二、Innodb索引—B+树
1.为什么使用B+树
B+ 树是由二叉查找树,平衡二叉树和B树演化而来
-
二叉查找树: 任何节点的左节点的值都小于该节点,右节点都大于该节点。为了避免二叉查找树的极端情况,即太高瘦或变成链表,引入了平衡二叉树。
-
平衡二叉树: 又称 AVL 树,在满足二叉查找树特性的基础上,要求每个节点的左右子树的高度差不能超过 1。不平衡的时候会通过调整节点进行平衡,即要矮胖。若插入操作比查询操作多,则旋转次数多,性能低。
-
红黑树:红黑树是一种自平衡二叉搜索树,其中每个节点都有一个额外的位,并且该位通常被解释为颜色(红色或黑色)。这些颜色用于确保树在插入和删除期间保持平衡。其最长子树不超过最短子树的2倍。
1.根节点是黑色
2.每个红色节点的两个子节点都是黑色(从每个叶子到根的所有路径上不能有两个;连续的红色结点)
3.从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。
随着数据插入,树的深度变深,IO次数增加,影响读取效率。 -
B-树:是一种自平衡的树,能够保持数据有序。即一个有序的多路查询树。.
一棵 M 阶的B+树定义如下:
1)树中每个结点至多有m个孩子结点(即至多有一个关键字)
2)每个结点的结构为 指针-关键字-指针-关键字…指针。第一个指针指向比第一个关键字小的结点,下一个指针指向比他相邻左边关键字大的结点,依此类推只有m-1个关键字。
3)除根结点外,其它结点至少有m/2个孩子结点(若为奇数,向上取整)
4)若根节点不是叶子结点,则根节点至少有两个孩子结点
5)所有叶子结点都在同一层上,即B树是所有结点的平衡因子均等于0的多路查找树。
每个节点中有key(索引),也有data(对于MyISAM来说是数据的地址,对于InnoDB来说是数据本身),但是每一个节点的存储空间是有限的,data占用较大时,会导致每个节点存储的key就会减少(即树的分支变少),同样会导致B树的高度较大,磁盘IO次数花费增大,效率降低。 -
B+树:B+树是B树的一种变形形式,B+树上的叶子节点存储关键字以及相应记录的地址,叶子节点以上各层作为索引使用。
一棵 M 阶的B+树定义如下:
1)每个节点至多有 M 个子树;
2)除根节点外,每个节点有 ceil(M/2)至M 个子树,根节点至少有两个子树;
3)有 k 个子树的节点必有 k 个关键字。
4)叶子节点包含了全部关键字和数据指针,叶子节点内的关键字有序排列,叶子节点间也是有序排列,指针相连。
5)所有非叶子节点可以看成是索引,仅包含其子树中最大(或最小)关键字的值。
6)所有的叶子节点都位于同一层。
由于B+树非叶子节点不存放数据地址,那这部分多出来的空间可以存放更多的关键字,这样一来B+树的高度也会比B树低,磁盘IO次数会更少。
索引
索引是一种用于快速查询和检索数据的数据结构。常见的索引结构有: B树, B+树和Hash。索引的作用就相当于目录的作用。
索引类型
- 主键索引(Primary Key)
数据表的主键列使用的就是主键索引。
一张数据表有只能有一个主键,并且主键不能为null,不能重复。
在mysql的InnoDB的表中,当没有显示的指定表的主键时,InnoDB会自动先检查表中是否有唯一索引的字段,如果有,则选择该字段为默认的主键,否则InnoDB将会自动创建一个6Byte的自增主键。
- 二级索引(辅助索引)
二级索引又称为辅助索引,是因为二级索引的叶子节点存储的数据是主键。也就是说,通过二级索引,可以定位主键的位置。
唯一索引,普通索引,前缀索引等索引属于二级索引。
-
唯一索引(Unique Key) :唯一索引也是一种约束。**唯一索引的属性列不能出现重复的数据,但是允许数据为NULL,一张表允许创建多个唯一索引。
**建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。 -
普通索引(Index) :普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和NULL。
-
前缀索引(Prefix) :前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小, 因为只取前几个字符。
-
全文索引(Full Text) :全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6之前只有MYISAM引擎支持全文索引,5.6之后InnoDB也支持了全文索引。
聚集索引与非聚集索引
聚集索引
聚集索引即索引结构和数据一起存放的索引。主键索引属于聚集索引。
聚集索引的优点:聚集索引的查询速度非常的快,因为整个B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据
聚集索引的缺点
- 依赖于有序的数据 :因为B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或UUID这种又长又难比较的数据,插入或查找的速度肯定比较慢。
- 更新代价大 : 如果对索引列的数据被修改时,那么对应的索引也将会被修改, 而且况聚集索引的叶子节点还存放着数据,修改代价肯定是较大的, 所以对于主键索引来说,主键一般都是不可被修改的。
非聚集索引
非聚集索引即索引结构和数据分开存放的索引。二级索引属于非聚集索引。
非聚集索引的叶子节点并不一定存放数据的指针, 因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据。
非聚集索引的优点:更新代价比聚集索引要小 。非聚集索引的更新代价就没有聚集索引那么大了,非聚集索引的叶子节点是不存放数据的
非聚集索引的缺点
- 跟聚集索引一样,非聚集索引也依赖于有序的数据
- 可能会二次查询(回表) :这应该是非聚集索引最大的缺点了。 当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。
覆盖索引
如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。我们知道在InnoDB存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!
覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了, 而无需回表查询。
索引创建原则
- 单列索引
单列索引即由一列属性组成的索引。 - 联合索引(多列索引)
联合索引即由多列属性组成索引。 - 最左前缀原则
在MySQL建立联合索引时会遵守最左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。